共查询到20条相似文献,搜索用时 9 毫秒
1.
Human cytomegalovirus infects Caco-2 intestinal epithelial cells basolaterally regardless of the differentiation state 下载免费PDF全文
Esclatine A Lemullois M Servin AL Quero AM Geniteau-Legendre M 《Journal of virology》2000,74(1):513-517
Human cytomegalovirus (CMV) causes severe disease in immunosuppressed patients and notably infects the gastrointestinal tract. To understand the interaction of CMV with intestinal epithelial cells, which are highly susceptible to CMV infection in vivo, we used the intestinal epithelial cell line Caco-2 and demonstrated that CMV enters predominantly through the basolateral surface of polarized Caco-2 cells. As shown by expression of all three classes of CMV proteins and by visualization of nucleocapsids by transmission electron microscopy, both poorly and fully differentiated Caco-2 cells were permissive to CMV replication. However, infection failed to produce infectious particles in Caco-2 cells, irrespective of the state of differentiation. 相似文献
2.
Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells. 总被引:4,自引:0,他引:4
Zinc uptake mechanisms at the apical and basolateral membrane borders of caco-2 cells were examined. This human-derived cell line possesses many morphological and functional characteristics of absorptive small intestinal cells. By day 14, confluent and well-differentiated monolayers were formed when the cells were grown on porous polycarbonate filters. Labelled zinc was placed on the apical or basal side of the monolayer and its uptake by the cells, as well as its transport across the monolayer, were measured. Zinc uptake by the cells from the apical side was found to be a saturable process (Kt = 41 microM; Vmax = 0.3 nmols/cm2/10 min) with a diffusional term at higher concentrations (1.0 sec/cm). Apical uptake was not affected by metabolic inhibitors or potential zinc ligands. Zinc uptake from the basolateral side was concentration dependent (Kd = 1.3 sec/cm) and was partially inhibited (30%) by ouabain and vanadate, suggesting that the (Na-K)-ATPase on the basolateral membrane is involved in the serosal uptake of zinc by the cell. Transport of zinc across the monolayers from the apical or basolateral compartment was concentration dependent and was not affected by metabolic inhibitors. Zinc transport from the basolateral side was greater than 2-fold greater than apical transport. Hence, separate mechanisms can be distinguished with respect to zinc uptake at the apical and basolateral membranes of caco-2 cells. 相似文献
3.
4.
5.
《Epigenetics》2013,8(6):585-593
Human Cytomegalovirus (HCMV) is a ubiquitous herpesvirus that infects and establishes latency in the majority of the human population and may cause fatal infections in immunocompromised patients. Recent data implies a close interaction between HCMV encoded proteins and cellular epigenetic mechanisms such as histone acetylation and deacetylation. In this study, we investigated the interactions between HCMV infection and the DNA methylation machinery in different host cells using several approaches. We found that colon cancer cell line HCT-116 lacking the DNMT1 and DNMT3b methyltransferases was susceptible to HCMV-AD169 infection, while wild-type cells were non-susceptible. Treatment of wild-type HCT-116 cells with 5-azacytidine rendered them susceptible to infection. Further investigation of HCMV infected MRC-5 fibroblasts demonstrated significant global hypomethylation, a phenomenon that was virus strain-specific and associated with the re-localization of DNMT1 and DNMT3b from the nucleus to the cytoplasm. The cytoplasmic accumulation of DNMT1 was also evident in in vitro infected macrophages and in epithelial cells in tissue samples from patients with inflammatory bowel disease and concomitant HCMV infection. Foscavir treatment of virus infected fibroblasts did not affect the majority of the virus induced nuclear exclusion of DNMT1, which suggest that it is dependent on viral IE gene products. In conclusion, HCMV infection results in profound effects on the host cell DNA methylation machinery and is associated with inflammation in vivo. Our results improve the understanding of cytomegalovirus pathogenesis and open the search for new antiviral therapy targets. These findings may also contribute to the further understanding of mechanisms involved in DNA methylation abnormalities in physiological and pathological conditions. 相似文献
6.
Human cytomegalovirus infection of endothelial cells triggers platelet adhesion and aggregation 总被引:5,自引:0,他引:5
Human cytomegalovirus (HCMV) is an opportunistic pathogen that has been implicated in the pathogenesis of vascular diseases. HCMV infection of endothelial cells may lead to vascular damage in vitro, and acute-phase HCMV infection has been associated with thrombosis. We hypothesized that viral infection of endothelial cells activates coagulation cascades and contributes to thrombus formation and acute vascular catastrophes in patients with atherosclerotic disease. To assess the effects of HCMV on thrombogenesis, we examined the adhesion and aggregation of blood platelets to uninfected and HCMV-infected endothelial cells. At 7 days after infection, platelet adherence and aggregation were greater in infected than in uninfected cultures (2,000 platelets/100 cells and 225 +/- 15 [mean +/- standard error of the mean] aggregates/five microscopic fields versus 100 platelets/100 cells and no aggregates). von Willebrand factor (vWF), ICAM-1, and VCAM-1 but not collagen IV, E-selectin, P-selectin, CD13, and CD31 were expressed at higher levels on infected cells than on uninfected cells. Platelet aggregation was inhibited by blocking of platelet GPIb (with blocking antibodies) or GPIIb/IIIa (with ReoPro) or by blocking of vWF (with polyclonal antibodies to vWF). Furthermore, blocking of vWF, platelet GPIb, and ICAM-1 but not of the endothelial cell marker CD13, alpha(5)beta(3)-integrin, or HCMV glycoprotein B reduced platelet adherence to infected cells by 75% +/- 5%, 74% +/- 5%, or 18% +/- 5%, respectively. The increased thrombogenicity was dependent on active virus replication and could be inhibited by foscarnet and ganciclovir; these results suggest that a late viral gene may be mediating this phenomenon, which may contribute to vascular catastrophes in patients with atherosclerotic disease. 相似文献
7.
Protein phosphorylation in response to the tumor promoter TPA is dependent on the state of differentiation of muscle cells 总被引:2,自引:0,他引:2
We have shown previously (A. Sobel and A. H. Tashjian, Jr. (1983). J. Biol. Chem. 258, 10,312-10,324;A. Sobel and M.C. Boutterin (1985). Neurochem. Int. 7, 995-1006) that, in the pituitary-derived GH4C1 cells, thyrotropin-releasing hormone or the tumor promoter TPA (12-O-tetradecanoylphorbol-13-acetate) stimulates the phosphorylation of two sets of cytoplasmic proteins related to the regulation of prolactin synthesis and release, respectively. Interestingly, phosphoproteins with identical electrophoretic migration properties on two-dimensional gels were detected in cultured neonate or adult mouse muscle cells and in the L6 and C2 myogenic cell lines. In addition TPA, which is known to have many actions on muscle cell functions, proliferation, and differentiation, stimulated the phosphorylation of these same proteins in myoblasts in culture. After fusion of the proliferating myoblasts into differentiated myotubes, this TPA-induced stimulation was strongly reduced in normal muscle cell cultures where some mononucleate muscle and non-muscle cells remained present. It was totally abolished in the homogeneous L6 and C2 cell lines. These observations suggest that the same phosphoproteins may be related to the intracellular mechanisms involved in the transduction of extracellular regulatory signals in such distinct differentiated environments as those of pituitary and muscle cells. In muscle cells themselves, the regulation of the phosphorylation of these proteins is function of the cell's state of differentiation. 相似文献
8.
Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. 总被引:13,自引:0,他引:13 下载免费PDF全文
Cecilia S?derberg-Nauclér Daniel N. Streblow Kenneth N. Fish Justine Allan-Yorke Patricia P. Smith Jay A. Nelson 《Journal of virology》2001,75(16):7543-7554
We have previously demonstrated reactivation of latent human cytomegalovirus (HCMV) in myeloid lineage cells obtained from healthy donors. Virus was obtained from allogenically stimulated monocyte-derived macrophages (Allo-MDM), but not from macrophages differentiated by mitogenic stimulation (ConA-MDM). In the present study, the cellular and cytokine components essential for HCMV replication and reactivation were examined in Allo-MDM. The importance of both CD4(+) and CD8(+) T cells in the generation of HCMV-permissive Allo-MDM was demonstrated by negative selection or blocking experiments using antibodies directed against both HLA class I and HLA class II molecules. Interestingly, contact of monocytes with CD4 or CD8 T cells was not essential for reactivation of HCMV, since virus was observed in macrophages derived from CD14(+) monocytes stimulated by supernatants produced by allogeneic stimulation of peripheral blood mononuclear cells. Examination of the cytokines produced in Allo-MDM and ConA-MDM cultures indicated a significant difference in the kinetics of production and quantity of these factors. Further examination of the cytokines essential for the generation of HCMV-permissive Allo-MDM identified gamma interferon (IFN-gamma) but not interleukin-1 or -2, tumor necrosis factor alpha, or granulocyte-macrophage colony-stimulating factor as critical components in the generation of these macrophages. In addition, although IFN-gamma was crucial for reactivation of latent HCMV, addition of IFN-gamma to unstimulated macrophage cultures was insufficient to reactivate virus. Thus, this study characterizes two distinct monocyte-derived cell types which can be distinguished by their ability to reactivate and support HCMV replication and identifies the critical importance of IFN-gamma in the reactivation of HCMV. 相似文献
9.
M. Mehran E. Levy M. Bendayan E. Seidman 《In vitro cellular & developmental biology. Animal》1997,33(2):118-128
Summary Although Caco-2 cells are frequently employed for the study of enterocyte lipid metabolism, variable results have been reported
regarding their ability to synthesize and secrete lipids and apolipoproteins. The major goal of this investigation is to examine
the capacity of Caco-2 cells to elaborate and secrete lipids, lipoproteins, and apolipoproteins at different degrees of morphological
and functional differentiation. Cells were cultured in medium with 5% fetal bovine serum (FBS), on permeable polycarbonate
filters from 2 to 30 d in the presence of 14C-oleate or 35S-methionine. Cellular differentiation, as assessed by morphology (light and electron microscopy), transepithelial resistance,
free fatty acid flux, and sucrase activity, progressed steadily up to 20 d of culture. Caco-2 cells esterified oleic acid
mainly into phospholipids, triglycerides (TG), and smaller amounts of cholesterol esters. Lipid synthesis began as early as
2 d, and TG secretion was enhanced with increased duration of culture. However, very low efficiency of lipid export was observed
at all levels of differentiation, reaching a maximum of only 6% of intracellular lipids. VLDL and LDL were the dominant lipoproteins
secreted, with HDL comprising <20% of the total. VLDL secretion increased, while LDL decreased, whereas the lipid composition
of lipoproteins varied little with increasing duration of culture. Apoprotein B and A-I synthesis and secretion increased
markedly from 11 to 20 d of culture. The ratio of apo B-100/B-48 decreased between 11 and 30 d, consistent with enhanced apo
B editing of more mature enterocytes. Taken together, our data suggest that from 20 d of culture, Caco-2 cells are morphologically
and functionally mature, capable of lipid esterification, and lipoprotein and apolipoprotein synthesis. However, despite their
functional and morphological similarities to mature enterocytes, Caco-2 cells have a very limited lipid export capacity. 相似文献
10.
Epithelial cells respond to mechanical stimuli by increasing exocytosis, endocytosis, and ion transport, but how these processes are initiated and coordinated and the mechanotransduction pathways involved are not well understood. We observed that in response to a dynamic mechanical environment, increased apical membrane tension, but not pressure, stimulated apical membrane exocytosis and ion transport in bladder umbrella cells. The exocytic response was independent of temperature but required the cytoskeleton and the activity of a nonselective cation channel and the epithelial sodium channel. The subsequent increase in basolateral membrane tension had the opposite effect and triggered the compensatory endocytosis of added apical membrane, which was modulated by opening of basolateral K+ channels. Our results indicate that during the dynamic processes of bladder filling and voiding apical membrane dynamics depend on sequential and coordinated mechanotransduction events at both membrane domains of the umbrella cell. 相似文献
11.
12.
Butyrate, a short-chain fatty acid produced in the colon, reduces proliferation and increases differentiation of colon cancer cells. p27, an inhibitor of cyclin-dependent kinases and a negative regulator of the cell cycle, is thought to have a key function in the differentiation of various cell lines. The objective of the present study was to elucidate the role of p27 in butyrate-induced differentiation of the human colorectal carcinoma cell line Caco-2. In this report we show that in spite of the increase in p27 protein expression after incubation with the HMG-CoA reductase inhibitor mevastatin, alkaline phosphatase activity decreases significantly in this cell line. In addition, mevastatin caused a significant increase in the cell cycle inhibitor p21. All effects could be reversed by addition of mevalonate to the medium. Taken together, we provide the first evidence that in Caco-2 cells p27 may have other functions apart from the regulation of cell differentiation. 相似文献
13.
Human cytomegalovirus inhibits neuronal differentiation and induces apoptosis in human neural precursor cells 总被引:6,自引:0,他引:6 下载免费PDF全文
Odeberg J Wolmer N Falci S Westgren M Seiger A Söderberg-Nauclér C 《Journal of virology》2006,80(18):8929-8939
Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5 and 2.2% and consequences varying from asymptomatic infection to lethal conditions for the fetus. Infants that are asymptomatic at birth may still develop neurological sequelae, such as hearing loss and mental retardation, at a later age. Infection of neural stem and precursor cells by HCMV and consequent disruption of the proliferation, differentiation, and/or migration of these cells may be the primary mechanism underlying the development of brain abnormalities. In the present investigation, we demonstrate that human neural precursor cells (NPCs) are permissive for HCMV infection, by both the laboratory strain Towne and the clinical isolate TB40, resulting in 55% and 72% inhibition of induced differentiation of human NPCs into neurons, respectively, when infection occurred at the onset of differentiation. This repression of neuronal differentiation required active viral replication and involved the expression of late HCMV gene products. This capacity of HCMV to prevent neuronal differentiation declined within 24 h after initiation of differentiation. Furthermore, the rate of cell proliferation in infected cultures was attenuated. Surprisingly, HCMV-infected cells exhibited an elevated frequency of apoptosis at 7 days following the onset of differentiation, at which time approximately 50% of the cells were apoptotic at a multiplicity of infection of 10. These findings indicate that HCMV has the capacity to reduce the ability of human NPCs to differentiate into neurons, which may offer one explanation for the abnormalities in brain development associated with congenital HCMV infection. 相似文献
14.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes. 相似文献
15.
Haspot F Lavault A Sinzger C Laib Sampaio K Stierhof YD Pilet P Bressolette-Bodin C Halary F 《PloS one》2012,7(4):e34795
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that is able to infect fibroblastic, epithelial, endothelial and hematopoietic cells. Over the past ten years, several groups have provided direct evidence that dendritic cells (DCs) fully support the HCMV lytic cycle. We previously demonstrated that the C-type lectin dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) has a prominent role in the docking of HCMV on monocyte-derived DCs (MDDCs). The DC-SIGN/HCMV interaction was demonstrated to be a crucial and early event that substantially enhanced infection in trans, i.e., from one CMV-bearing cell to another non-infected cell (or trans-infection), and rendered susceptible cells fully permissive to HCMV infection. Nevertheless, nothing is yet known about how HCMV enters MDDCs. In this study, we demonstrated that VHL/E HCMV virions (an endothelio/dendrotropic strain) are first internalized into MDDCs by a macropinocytosis-like process in an actin- and cholesterol-dependent, but pH-independent, manner. We observed the accumulation of virions in large uncoated vesicles with endosomal features, and the virions remained as intact particles that retained infectious potential for several hours. This trans-infection property was specific to MDDCs because monocyte-derived macrophages or monocytes from the same donor were unable to allow the accumulation of and the subsequent transmission of the virus. Together, these data allowed us to delineate the early mechanisms of the internalization and entry of an endothelio/dendrotropic HCMV strain into human MDDCs and to propose that DCs can serve as a "Trojan horse" to convey CMV from entry sites to other locations that may favor the occurrence of either latency or acute infection. 相似文献
16.
Nussenzveig Daniel R.; Matos Maria De Fatima C.; Thaw Colette N. 《American journal of physiology. Cell physiology》1998,275(5):C1264
The human calcitonin receptor (hCTR) is expressed in polarizedcells of the kidney, bone, and nervous system. In the kidney, hCTRs arefound in cells of the distal nephron to which blood-borne calcitoninhas access only at the basolateral surface. We expressed hCTR subtypes1 and 2 in Madin-Darby canine kidney (MDCK) cells to establish a cellmodel useful for delineating the molecular mechanisms underlying hCTRpolarity. Selective cell surface incubation demonstrated functionalpolarity of hCTRs by equilibrium binding or cross-linking ofradioiodinated salmon calcitonin(125I-sCT) and cAMP accumulationstimulated by sCT. We estimated that at the steady state there are40-fold more hCTRs on the basolateral than on the apical side.Domain-selective cell surface biotinylation followed by immunoblottingof streptavidin-agarose-fractionated biotinylated glycoproteinsindependently confirmed the polarized distribution of FLAGepitope-tagged hCTR-2 in the basolateral domain. Confocal microscopy ofimmunostained receptors revealed that hCTRs are concentrated on alateral subdomain of the basolateral membrane. Cell surface arrivalassay of newly formed receptors demonstrated that direct delivery tothe basolateral domain is the mechanism by which hCTRs becomepolarized. Measurement of receptor turnover on the basolateral surfaceshowed that retention contributes to hCTR distribution at the steadystate. 相似文献
17.
S Muallem C Burnham D Blissard T Berglindh G Sachs 《The Journal of biological chemistry》1985,260(11):6641-6653
The ion-transport properties of the basal lateral membranes of intact isolated parietal cells were studied at the cellular and subcellular level. The presence of an amiloride-sensitive Na+:H+ exchange was demonstrated in cells by proton gradient-driven Na+ uptake and by changes in cell pH as monitored by dimethylcarboxylfluorescein fluorescence both in a fluorimeter and on single isolated cells using a fluorescence microscope and an attached intensified photodiode array spectrophotometer. The presence of the Na+:H+ antiport in vesicles was shown both by intravesicular acidification monitored by acridine orange fluorescent quenching and by proton gradient-dependent Na+ uptake. The presence of Cl-:HCO-3 exchange was determined in intact cells by monitoring changes in cell pH due to Cl- uptake and was shown to be 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid- and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid-sensitive. In vesicles, Cl-:HCO-3 exchange was demonstrated by Cl- flux measurement. The apparent affinities for both Cl- and HCO-3 on either side of the membrane were determined to be Km Cli = 20 mM, Km Clout = 17.5 mM, Km HCO-3in = 2.5 mM, and Km HCO-3out = 7.5 mM. A K+ conductance in cells and vesicles was demonstrated by monitoring K+ gradient-dependent 86Rb uptake. No evidence was found for the presence of a Cl- conductance in either cells or vesicles but a H+ conductance was found to be present in vesicles but not in intact cells. In the latter, by determining the effect of either Na+ or Cl- gradients on cell pH and by flux calculations it was concluded that the Cl-:HCO-3 exchange was the major passive flux mechanism for pH regulation in this cell type. 相似文献
18.
19.
Sarnataro D Paladino S Campana V Grassi J Nitsch L Zurzolo C 《Traffic (Copenhagen, Denmark)》2002,3(11):810-821
PrP(C) is a glycosylphosphatidylinositol-anchored protein expressed in neurons as well as in the cells of several peripheral tissues. Although the normal function of PrP(C) remains unknown, a conformational isoform called PrP(Sc) (scrapie) has been proposed to be the infectious agent of transmissible spongiform encephalopathies in animals and humans. Where and how the PrP(C) to PrP(Sc) conversion occurs in the cells is not yet known. Therefore, dissecting the intracellular trafficking of the wild-type prion protein, as well as of the scrapie isoform, can be of major relevance to the pathogenesis of the diseases. In this report we have analyzed the exocytic pathway of transfected mouse PrP(C) in thyroid and kidney polarized epithelial cells. In contrast to the majority of glycosylphosphatidylinositol-anchored proteins, we found that PrP(C) is localized mainly on the basolateral domain of the plasma membrane of both cell lines. This is reminiscent of the predominant somatodendritic localization found in neurons. However, similarly to apical glycosylphosphatidylinositol-proteins, PrP(C) associates with detergent-resistant microdomains, which have been suggested to have a role in apical sorting of glycosylphosphatidylinositol-proteins, as well as in the conversion process of PrP(C) to PrP(Sc). In order to discriminate whether detergent-resistant microdomains have a direct role in PrP(Sc) conversion, or whether they are involved in the transport of the protein to the site of its conversion, we have examined the effect of disruption of detergent-resistant microdomain association on PrP(C) intracellular traffic. Consistent with the unusual basolateral localization of this glycosylphosphatidylinositol-linked protein, our data exclude a classical role for detergent-resistant microdomains in the post-trans-Golgi network sorting and transport of PrP(C) to the plasma membrane. 相似文献
20.
H Schiechl 《Zeitschrift für mikroskopisch-anatomische Forschung》1983,97(1):33-42
The basolateral membrane of isolated villus cells of rat small intestine was isolated and was used to investigate the structural changes as well as the simultaneous alterations of its protein pattern at low pH-value. For this purpose the alterations, which occur on the membrane under the influence of HCL, were studied in the electron microscope (negative staining) and by SDS-Polyacryl-amid-Gel electrophoresis. The results show firstly a total disintegration of the membrane and the formation of very uniformly shaped fragments and secondly the absence of protein bands in the fragments in comparison to the protein pattern of the intact membrane. Extraction of more extensive protein bands could not be demonstrated. Possible conclusions concerning the structure of the basolateral membrane and parallels to the reaction of Erythrocyte membrane under the same conditions are discussed. 相似文献