首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whisker-mediated transformation of embryogenic callus of maize   总被引:4,自引:0,他引:4  
 The present study was designed to establish embryogenic callus as a target tissue for whisker-mediated transformation of maize (Zea mays L.). Silicon carbide whiskers were used to deliver the bar and uidA (GUS) genes into embryogenic maize callus. Samples of osmotically-treated Type II callus were vigorously agitated in the presence of whiskers and plasmid DNA using a standard laboratory vortex or a modified dental amalgamator. On average, three transgenic callus lines were obtained per 100 samples treated. Plants were regenerated from several GUS-expressing callus lines and DNA analyses confirmed stable integration and inheritance. As with other direct DNA delivery methods involving embryogenic maize callus, integration patterns of the inserted DNA appeared to be complex. Although currently less efficient than microparticle bombardment on a per target basis, whisker-mediated transformation of embryogenic callus represents a viable method for transgenic maize production. Received: 14 May 1999 / Revision received: 11 October 1999 / Accepted: 11 October 1999  相似文献   

2.
玉米优良自交系成熟胚再生体系的建立   总被引:4,自引:0,他引:4  
选用生产上广泛应用的10个玉米优良自交系,用幼胚通过组织培养研究其再生特性,结果表明:玉米自交系基因型间的培养能力有较大的差异,自交系178的再生率高达78%。在此基础上以其中的178玉米优良自交系为材料,研究了影响玉米成熟胚再生的各种因素,结果表明:高浓度的2,4-二氯苯氧乙酸(2,4-D)(4.0 mg/L)是诱导愈伤组织必须的;在继代培养基中添加适量的2,4-D(2.0 mg/L)、6-苄基嘌呤(6-BA)(0.2 mg/L)和硝酸银(10 mg/L)显著增加胚性愈伤组织的形成;在分化培养基中添加0.5 mg/L 6-BA有利于提高愈伤组织的分化频率。该再生体系的建立,为以成熟胚为受体系统的遗传转化体系的建立奠定了基础。  相似文献   

3.
Sodium azide is a potent mutagen of maize (Zea mays L.) kernels that may have potential as a point mutagen for inducing biochemical mutations in maize tissue cultures. Azide mutagenicity was evaluated in friable, embryogenic maize callus and a nonregenerable maize suspension culture by determining the number of resistant variant cell lines able to grow on media containing inhibitory concentrations of lysine plus threonine (LT). The number of LT-resistant variants selected from either culture type did not increase in response to azide treatment. In addition, there was no increase in somatic mutations in more than 100 plants regenerated from azide treated LT-resistant lines. The levels of mutagenic metabolite of azide (presumably azidoalanine), were determined by bioassay in the two azide-treated maize callus types and compared to levels of mutagenic metabolite in embryos isolated from azide-treated kernels. The two types of maize tissue cultures and isolated embryos contained similar levels of mutagenic metabolite 4 h after azide treatment indicating similar uptake and conversion of azide to mutagenic metabolite in the three tissues. Mutagenic metabolite in azide-treated embryos did not significantly decrease after 40 h. However, mutagenic metabolite levels in both azide-treated tissue cultures decreased to near background levels within 20 h providing evidence for rapid metabolism of the azide mutagenic metabolite. The lack of evidence for azide mutagenicity in maize callus and its known potent mutagenicity in kernels appears to be associated with specific differences in azide metabolism between callus tissues and kernel embryos.  相似文献   

4.
农杆菌介导的高效玉米遗传转化体系的建立   总被引:7,自引:0,他引:7  
魏开发 《遗传》2009,31(11):1158-1170
为了建立玉米高频再生及高效遗传转化体系, 对影响玉米胚性愈伤组织诱导的11个因素及影响胚性愈伤分化的9个因素用正交实验方法进行研究。结果显示, 基因型对胚性愈伤诱导有极显著影响。6-BA、培养基、AgNO3、2,4-D、ABA对胚性愈伤诱导的影响达到显著水平。多重比较分析显示ABA 2 mg/L每间隔1代添加对胚性愈伤诱导率有显著影响。在影响分化的因素中, 基因型和6-BA浓度表现出极强的主效应, NAA、培养基、KT、2,4-D对分化产生显著影响。Southern blotting 分析表明, 25 mg/L潮霉素选择压下抗性愈伤率作为转化体系优化指标是可靠的。在影响转化效率的因素中, acetosyringone (AS)使用浓度因基因型不同而表现出敏感度差异, 共培养温度24~25℃、农杆菌浓度和浸泡时间0.7 OD×15 min, 以及pH值5.5~6.2是最高转化率的优选组合。在整合后的玉米遗传转化体系中, 黄早4和综31自交系以抗性愈伤率为指标的GUS基因稳定转化率分别达到48.6%和46.2%。  相似文献   

5.
. Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number in transgenic maize callus and plants. WHISKERS™-derived transgenic callus lines and plants were generated using two different gene constructs. These transgenic materials represented a range of copy number. A 'standard curve' was established by mixing plasmid DNA with non-transgenic genomic maize DNA using a calculated ratio of target gene to host genome size. 'Estimated' copy number in the callus lines and plants using qRT-PCR was correlated with the 'actual' copy number based on Southern blot analysis. The results indicated that there was a significant correlation between the two methods with both gene constructs. Thus, qRT-PCR represents an efficient means of estimating copy number in transgenic maize.  相似文献   

6.
骨干玉米自交系丹598遗传再生体系的建立   总被引:2,自引:0,他引:2  
目的:以玉米骨干自交系丹598的幼胚为外植体,诱导愈伤组织建立遗传再生体系。方法:探讨胚龄、培养基种类、2,4-D浓度对愈伤组织诱导的影响。结果:在授粉后16~18 d,2,4-D浓度为2.0 mg/L时诱导最佳;设置N6、NB、改良NB、MS、MB等5种培养基,筛选出改良NB培养基为最佳诱导培养基;分化培养基中添加1 mg/L激动素、0.5 mg/L 6-卞基嘌呤和0.5 mg/L萘乙酸能促进绿苗分化和根系生长。结论:建立了玉米自交系丹598的优良再生体系,为以后的基因转化工作打下了良好基础。  相似文献   

7.
Summary RFLP analysis was performed with anther culture-derived callus lines developed from the maize F1 hybrids Pa91 x FR16 (PF), H99 x Pa91 (HP) and H99 x FR16 (HF). Relatively evenly spaced RFLP markers were selected to cover the maize genome with 52, 58 and 35 RFLP markers for the PF, HP and HF callus lines, respectively. The results from populations PF and HP combined with limited information from HF showed that six chromosomal regions on chromosomes 1, 2 (two regions), 3, 6 and 8 appear to be associated with the formation of embryo-like structures (ELSs) from microspores or the subsequent formation of regenerable callus from the ELSs. Regions at the end of the long arm of chromosome 2 and on the long arm of chromosome 8 appear to be associated with ELS formation, and the other regions appear to be associated with either ELS or regenerable callus formation or both. Certain regions that we have identified are the same as those found in other studies to be important for friable, embryogenic callus formation (chromosomes 1 and 3 and near the centromere of 2) and for ESL formation (chromosomes 1 and 3). This study has provided evidence for the genetic basis of the maize anther culture response and callus formation.  相似文献   

8.
本文对来源于美国、墨西哥和中国的144份不同玉米自交系幼胚胚性愈伤组织的再生能力相关性状进行了研究,发现其再生能力受到环境、基因型及环境与基因型互作三方面的影响。其中各性状之间的相关性表现为:绿点率(green embryonic callus rate, GCR)、分化率(embryonic callus differentiating rate, CDR)及再生绿苗数(the plantlet number of embryonic callus regeneration, CPN)之间呈极显著正相关,且这三者与褐化率(embryonic callus browning rate, CBR)呈极显著负相关; 两次继代的克隆指数(embryonic callus cloning index for the first subculture, CCI1; embryonic callus cloning index for the second subculture, CCI2)呈显著正相关,且CCI2与GCR有一定的正相关关系,与CBR呈负相关关系;生根率(embryonic callus rooting rate, CRR)则与GCR、CDR及CPN呈一定正相关。经过广义遗传力计算发现:胚性愈伤组织的两次继代克隆指数CCI1、CCI2和CRR的遗传力较低,其他性状的遗传力较高。此外,经Ward法双向聚类分析,共发现了11个具有高再生能力的自交系材料,且通过生根培养发现其再生绿苗的生根情况良好,因而可将它们作为玉米转基因受体的骨干自交系。  相似文献   

9.
Transgenic maize plants by tissue electroporation.   总被引:24,自引:1,他引:23       下载免费PDF全文
In this paper, we describe the transformation of regenerable maize tissues by electroporation. In many maize lines, immature zygotic embryos can give rise to embryogenic callus cultures from which plants can be regenerated. Immature zygotic embryos or embryogenic type I calli were wounded either enzymatically or mechanically and subsequently electroporated with a chimeric gene encoding neomycin phosphotransferase (neo). Transformed embryogenic calli were selected from electroporated tissues on kanamycin-containing media and fertile transgenic maize plants were regenerated. The neo gene was transmitted to the progeny of kanamycin-resistant transformants in a Mendelian fashion. This showed that all transformants were nonchimeric, suggesting that transformation and regeneration are a single-cell event. The maize transformation procedure presented here does not require the establishment of genotype-dependent embryogenic type II callus or cell suspension cultures and facilitates the engineering of new traits into agronomically relevant maize inbred lines.  相似文献   

10.
An in vitro continuous endosperm callus culture derived from developing endosperm of transformation-amenable maize Hi-II genotype was obtained. The endosperm callus was composed of cells that differentiated into aleurone-like and starchy endosperm-like cell types. This callus has been maintained for 4?yr. Endosperm callus cells transcribe and produce zein proteins at a level similar to developing endosperm tissue. Starchy endosperm cells of the endosperm callus displayed active starch biosynthetic activity. The dual cell physiology of this culture limited the utility of the cell line for promoter analysis and transient assays of gene expression in the current culture conditions. However, because such cell line can be readily initiated and easily maintained for a long period of time, it provides an alternative tool for analysis of transgene expression in endosperm callus derived from transgenic maize lines in Hi-II background.  相似文献   

11.
This research uses the immature embryos of inbred maize lines (GSH9901, Hi01, Hi02, and Chang 7-2) as receptor materials to establish the callus induction system. These inbred lines provide the receptor materials for the genetic regeneration of maize and the verification of the genetic functions of maize. The factor experiment and orthogonal experiments were used to investigate the impacts of different genotypes, immature embryo size, shield orientation, 2, 4-D concentration, proline concentration, and folic acid concentration on the induction rate of embryogenic callus tissue. A sensitivity experiment testing glyphosate (Bar) and an antibiotic (Cefotaxime sodium) were also conducted. The results indicate that the immature embryos of inbred maize line GSH9901 were the most effective for callus tissue induction, and the immature embryos with a length of 1.6-2.0 mm produce the best result. The upward shield face is more successful for the formation of induced callus. Using orthogonal analysis, we found that the optimal combination for the induction system was A3 (2,4-D concentration 0.25 mg mL-1 ), B1C3 (proline concentration 0.8 mg mL-1 ), and D2 (folate Concentration 0.5 mg mL-1) and the induction rate reached 84%. We found that cold storage at 4 °C for 1 d is more conducive for the formation of embryogenic callus than the other treatments tested. The sensitivity experiment for callus tissue screening revealed the critical concentration of glyphosate to be 10 mg ml-1 , and the critical concentration of antibiotic is 250 mg ml-1 . Using this combination of glyphosate and antibiotic resulted in regenerated plants. This study established the optimal conditions for immature embryo callus tissue induction in maize.  相似文献   

12.
Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos. Eleven maize inbred lines were pre-screened for transformation frequency using N6 salts. A subset of three maize inbred lines was then systematically evaluated for frequency of post-infection embryogenic callus induction and transformation on four media regimes: N6 or MS salts in each of two distinct media backgrounds. Transgenic plants recovered from inbred lines B104, B114, and Ky21 were analyzed for transgene integration, expression, and transmission. Average transformation frequencies of 6.4% (for B104), 2.8% (for B114), and 8% (for Ky21) were achieved using MS salts. Availability of Agrobacterium-mediated maize inbred line transformation will improve future opportunities for maize genetic and functional genomic studies.  相似文献   

13.
14.
Breeding efforts to obtain more nutritious maize materials aimed at alleviating dietary deficiencies in developing countries have resulted in an improved maize germplasm known as quality protein maize (QPM). Quality protein maize has higher contents of tryptophan, lysine, and leucine than common maize, but suffers from some major agronomic drawbacks found in common inbred maize lines, such as susceptibility to insect pests and fungal and bacterial diseases and herbicide sensitivity. The development of a reproducible and efficient protocol for tissue culture of QPM is expected to solve some of these deficiencies. In this work, we have evaluated different formulations for in vitro induction of morphogenic responses in three QPM lines developed by the International Maize and Wheat Improvement Center (CIMMYT): CML (CIMMYT maize line)-145, CML-176, and CML-186. Only CML-176 and CML-186 have proven to be responsive to the in vitro conditions considered in this work, with CML-176 showing the highest efficiency in regenerable callus formation and growth. N6C1 medium was found to be efficient for in vitro culture of QPM, whereas no plants could be regenerated by using MPC medium. From CML-176 embyogenic calli cultured on N6C1 medium, we were able to regenerate up to 0.3 plants per 500 mg fresh weight (FW) callus. Further modifications in this experimental protocol, including the replacement of 3,6-dichloro-o-anisic acid with 2,4-dichlorophenoxyacetic acid and modification of the N6C1 vitamin balance, significantly increased the regeneration response of the induced calli, with up to 16.8 and 9.3 plants recovered per 500 mg FW callus for CML-176 and CML-186, respectively.  相似文献   

15.
玉米( Zea mays L.)转化成功与否与基因型密切相关.在转化过程中,除少数模式品种能够形成再生频率较高且易转化的Ⅱ型愈伤组织外,大多数栽培品种往往只能够形成再生频率较低且不易转化的Ⅰ型愈伤组织.因此探索Ⅰ型愈伤组织的诱导及其转化条件,提高转化效率,对直接改良玉米优良自交系具有重要意义.应用基因枪转化技术将苏云金杆菌( Bacillus thuringiensis ) cry1Ac3基因导入玉米优良自交系E28及340的Ⅰ型胚性愈伤组织中,经过膦丝菌素(PPT)或潮霉素(HygB)筛选,获得了再生植株.经PCR检测、Southern blot分析及Bt毒蛋白ELISA检测证实,外源基因已整合到玉米基因组中,并已获得表达.抗虫性分析结果表明,部分转基因玉米植株对玉米螟虫有较强的抗性.还比较了PPT和HygB两种筛选剂的筛选效果,表明PPT筛选的抗性愈伤组织的再生频率要高于HygB筛选的再生频率.  相似文献   

16.
Fertile, transgenic maize plants were generated by electroporation of suspension culture cells that were treated with a pectin-degrading enzyme. Electroporation of cells from two different suspension cultures, one derived from A188 X B73 and one derived from a B73-related inbred, with a plasmid containing the bar gene, resulted in high-frequency recovery of stably transformed callus lines. Plants were regenerated from thirteen transformed callus lines and transmission of bar to progeny was demonstrated.  相似文献   

17.
Cytological observations showed that mitotic variations among the four callus lines were toward different directions; two to haploidy, one to diploidy, and the fourth to polyploidy. These differences might be caused by varying genetic backgrounds. Under appropriate conditions, certain regenerable callus lines could be maintained by continued subcultures for an indefinite period of time. Microscopic examinations revealed that meiotic chromosome fusion in maize anther culture-derived R0 plants were again found in the R1 and R2 plants. This suggests that a genetic mechanism was involved in bringing about this characteristic fusion. This mechanism probably arose de novo during culturing since no fusion was found in the parental lines. Through a rigid selection for healthy and vigorous plants for two to three generations, genetically stable inbred lines originating from maize anther culture have been established.  相似文献   

18.
The expression of green fluorescent protein (GFP) and its inheritance were studied in transgenic barley (Hordeum vulgare L.) plants transformed with a synthetic green fluorescent protein gene [sgfp(S65T)] driven by either a rice actin promoter or a barley endosperm-specific d-hordein promoter. The gene encoding phosphinothricin acetyltransferase (bar), driven by the maize ubiquitin promoter and intron, was used as a selectable marker to identify transgenic tissues. Strong GFP expression driven by the rice actin promoter was observed in callus cells and in a variety of tissues of T0 plants transformed with the sgfp(S65T)-containing construct. GFP expression, driven by the rice actin promoter, was observed in 14 out of 17 independent regenerable transgenic callus lines; however, expression was gradually lost in T0 and later generation progeny of diploid lines. Stable GFP expression was observed in T2 progeny from only 6 out of the 14 (43%) independent GFP-expressing callus lines. Four of the 8 lines not expressing GFP in T2 progeny, lost GFP expression during T0 plant regeneration from calli; one lost GFP expression in the transition from the T0 to T1 generations and three lines were sterile. Similarly, expression of bar driven by the maize ubiquitin promoter was lost in T1 progeny; only 21 out of 26 (81%) independent lines were Basta-resistant. In contrast to actin-driven expression, GFP expression driven by the d-hordein promoter exhibited endosperm-specificity. All seven lines transformed with d-hordein-driven GFP (100%) expressed GFP in the T1 and T2 generations, regardless of ploidy levels, and expression segregated in a Mendelian fashion. We conclude that the sgfp(S65T) gene was successfully transformed into barley and that GFP expression driven by the d-hordein promoter was more stable in its inheritance pattern in T1 and T2 progeny than that driven by the rice actin promoter or the bar gene driven by the maize ubiquitin promoter.  相似文献   

19.
Cell suspension and callus cultures from somatic tissue of inbred lines of maize (Zea mays L.) were cultured on media that were defined via modification of a Linsmaier and Skoog preparation. Germlings incubated on the primary medium originally employed required long-term incubation for callus induction. Modification of the primary medium with high levels of iron and (ethylene dinitrillo)tetraacetic acid (EDTA), B vitamin amendments and vitamin E, shortened incubation by 75% and nearly doubled the percentage of germlings which produced callus. Callus did not remain viable in subcultures to the secondary medium originally employed, whereas a preparation, developed via modification of the original secondary medium, enabled perpetuation of callus through repeated subculture. Modification with high levels of iron and EDTA, plug B vitamins and vitamin E, with decreased concentrations of five inorganic salts, suppressed aberrant organogenesis and stabilized culture growth as viable callus. Similar modification, with the exception that EDTA was omitted, was employed for the development of a liquid medium. Tonicity of the medium was adjusted with a lowered level of sucrose, with the liquid further modified by addition of acetate. Upon development of this liquid, maize became the sixth monocot species for which somatic cells remain viable through repeated subculture in liquid suspensions.  相似文献   

20.
A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号