共查询到20条相似文献,搜索用时 0 毫秒
1.
The catalytically oxidized olive mill wastewater (OMW) was subjected to continuous anaerobic treatment using two treatment schemes. The 1st step in both schemes was an up-flow anaerobic sludge blanket (UASB) reactor (2 0 l). The 2nd step was either a hybrid UASB reactor or a classical one (1 0 l, each). The 1st stage was operated at constant hydraulic retention time (HRT) of 24 h. The organic loading rate (OLR) varied from 3.4 to 4.8 kgCOD/m3 d depending on the quality of the pretreated wastewater. The results obtained indicated that, the 1st step UASB reactor achieved a COD percentage removal value of 53.9%. Corresponding total BOD5 and TSS removal were 51.5% and 68.3%, respectively.The results obtained indicated that the hybrid UASB reactor as a 2nd step produced better quality effluent as compared to the classical one. This could be attributed to the presence of the packing curtain sponge with active biomass in the sedimentation part of hybrid UASB reactor which minimizes suspended solids washout, consequently enhancement of the efficiency of the reactor.Available data showed that a two stage system consisting of a classical and a hybrid UASB reactor operated at a total HRT of 48 h and OLR of 2.0 kgCOD/m3 d provided promising results. Removal values of CODtotal, BOD5 total, TOC, VFA, oil and grease were 83%, 84%, 81%, 93% and 81%, respectively. Based on the available data, the use of a two stage anaerobic system consisting of a classical UASB reactor followed by a hybrid UASB as a post-treatment step for catalytically oxidized OMW is recommended. 相似文献
2.
Photochemical UV/TiO2 treatment of olive mill wastewater (OMW) 总被引:1,自引:0,他引:1
El Hajjouji H Barje F Pinelli E Bailly JR Richard C Winterton P Revel JC Hafidi M 《Bioresource technology》2008,99(15):7264-7269
Olive mill wastewater (OMW) was treated by photocatalysis using TiO2 under UV irradiation on the laboratory scale. The chemical oxygen demand, the coloration at 330nm, and the level of phenols all showed decreases which, after a 24-h treatment, reached 22%, 57% and 94%, respectively. The differences between these three values indicate the persistence of colourless, non-phenolic compounds. Application of the novel Fictitious Atomic-Group Separation method showed an increase in carbon oxidation state and confirmed that the attack primarily concerns, aromatic moieties. A fine spectroscopic study revealed the occurrence of three successive phases during the degradation process, thought to correspond to three different categories of molecules in the OMW and the presence of pectin compounds. 相似文献
3.
The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations. 相似文献
4.
Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54–55 kg COD m−3), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m−3 d−1 provided 3.7–3.8 m3 biogas m−3 d−1 (63–64% CH4) and 81–82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7–4.1, 8.4–10.4 kg COD m−3 d−1) by introducing piggery effluent and OMW alternately. Biogas of 3.0–3.4 m3 m−3 d−1 (63–69% CH4) was reached.Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. 相似文献
5.
R. Borja J. Alba A. Mancha A. Martín V. Alonso E. Sánchez 《Bioprocess and biosystems engineering》1998,18(2):127-134
A comparative kinetic study was carried out on the anaerobic digestion of olive mill wastewater (OMW) and OMW that was previously fermented with Geotrichum candidum, Azotobacter chroococcum and Aspergillus terreus. The reactors used were continuously fed and contained sepiolite as support for the mediating bacteria. A kinetic model for multicomponent substrate removal by anaerobic digestion has been used. The model is based on the linear removal concept which is a special case of the broader Monod equation. The second-order kinetic constant, k 2( s ), was found to be influenced by the pretreatment carried out, and was 4.2, 4.0 and 2.5 times higher for Aspergillus, Azotobacter and Geotrichum-pretreated OMWs than that obtained in the anaerobic digestion of untreated OMW. This was significant at 95% confidence level. This behaviour is believed to be due to the lower levels of phenolic compounds and biotoxicity present in the pretreated OMWs. In fact, the kinetic constant increased when the phenolic compound content and biotoxicity of the pretreated OMWs decreased. In addition, the macroenergetic parameters of the anaerobic digestion of OMW, i.e. the specific rate of substrate uptake for cell maintenance, m, and the yield coefficient for the biomass, Y, decreased by a factor of 2.4, 3.6 and 5.1 and increased by a factor of 1.9, 2.2 and 2.4 respectively, for the OMWs previously treated with Geotrichum candidum, Azotobacter chroococcum and Aspergillus terreus in relation to the observed values for the untreated OMW. 相似文献
6.
A. Ramos-Cormenzana B. Jurez-Jimnez M. P. Garcia-Pareja 《International biodeterioration & biodegradation》1996,38(3-4)
Olive oil extraction produces a great volume of residue. These olive mill wastes are known as alpechin. This wastewater is a powerful pollutant, resistant to degradation and presents a severe environmental problem related to its high organic content made up largely of simple phenolic compounds, that have been described as being both antimicrobial and phytotoxic. This paper reviews briefly the antimicrobial activity of olive mill wastewaters and provides evidence to show the potential of micro organisms (Bacillus pumilus) to reduce the phenol content of alpechin, and also that biotransformation depends on the dilution (v/v) of the alpechin. Furthermore, we sought to provide a real evaluation of the extent of alpechin biotransformation. This was achieved by means of an internal reference, i.e. in relative terms, the phenol content resulting from the biotransformation process. The phenol content was measured using HPLC techniques, and results were obtained showing that the bacterium had most effect in reducing the phenol content of alpechin at concentrations of between 40 and 100%. It was also observed that at concentrations of 80%, in addition to a slight reduction in total phenols, new phenolic compounds, not present in the original alpechin, were generated. 相似文献
7.
Dr. N. Gharsallah 《Bioprocess and biosystems engineering》1994,10(1):29-34
The high organic content of Olive Mill Wastewaters (OMW) causes some difficulties in maintaining the anaerobic process efficiency at high level. The two phase anaerobic system was used to treat olive mill wastewaters, diluted with tap water. Phase separation was accomplished through control of the hydraulic retention time and initial COD removal in two reactors operated in series. The effect of substrate concentration and phase separation on removal efficiency has been investigated. Experimental results indicated that yield of 0.322 to 0.335 litre biogas/g COD removal were obtained with two phase anaerobic treatment and space loading rate of 2.3 and 2.4 gCOD/l.day. The maximum methane production rate near to the theoretical value and corresponded to 360 ml of CH4 for 1g COD removal.Abbreviations OMW
Olive Mill Wastewaters
- VFA
Volatile Fatty Acid
- COD
Chemical Oxygen Demand
- HRT
High Retention Time
- TKN
Total Kjeldahl Nitrogen 相似文献
8.
Kinetic study of anaerobic digestion of brewery wastewater 总被引:2,自引:0,他引:2
A study of the kinetics of the anaerobic digestion of brewery wastewater was carried out using a 1-litre, continuous-flow, completely-mixed, bioreactor operating at 35°C and containing a saponite-immobilized biomass at a concentration of 6·2 g volatile suspended solids (VSS)/litre. The bioreactor worked satisfactorily in a range of hydraulic retention times from 1·2 to 10 days and eliminated more than 95% of the initial chemical oxygen demand (COD) in all instances.
Guiot's kinetic model was used to determine the macroenergetic parameters of the system, and showed it to have a yield coefficient for the biomass (Y) of 0·080 g VSS/g COD and a specific rate of substrate uptake for cell maintenance (m) of 0·045 g COD/g VSS day.
The experimental results showed the rate of substrate uptake (Rs; g COD/g VSS day), correlated with the concentration of biodegradable substrate (Sb; g COD/litre), through an equation of the Michaelis-Menten type. 相似文献
9.
Molecular weight distribution of Pinus radiata kraft mill wastewater treated by anaerobic digestion 总被引:5,自引:0,他引:5
Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) < 1000, COD and colour decreased after anaerobic treatment, but the total phenolic compounds increased. In the 1000 < MW < 10,000 fraction, there was no change in COD, UV215 and colour. In the > 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater. 相似文献
10.
Mohamed Neifar Atef Jaouani María Jesús Martínez Michel J. Penninckx 《Journal of microbiology (Seoul, Korea)》2012,50(5):746-753
The efficiency of the two white-rot fungi Pycnoporus coccineus and Coriolopsis polyzona in the Olive Oil Mill Wastewater (OOMW) treatment was investigated. Both fungi were active in the decolourisation and COD removal of OOMW at 50 g/L COD, but only the first fungus remains effective on the crude effluent (COD=100 g/L). Moreover P. coccineus was less affected by oxygen supplementation and exhibited a high tolerance to agitation in comparison to C. polyzona. However, it required a nitrogen supplementation to obtain faster and higher COD removal. To overcome the negative effect of agitation on fungi growth and efficiency, immobilisation of C. polyzona and P. coccineus in polyurethane foam was applied. The immobilized system showed better COD decreases during three consecutive batches without remarkable loss of performances. The results obtained in this study suggested that immobilized C. polyzona and especially immobilized P. coccineus might be applicable to a large scale for the removal colour and COD of OOMW. 相似文献
11.
Alejandro Ruiz-Rodríguez Isabel Polonia Cristina Soler-Rivas Harry J. Wichers 《International biodeterioration & biodegradation》2011,65(2):285-293
Ligninolytic enzymes activities (laccases, peroxidases (total, MnP and MiP) and aryl-alcohol oxidase (AAO)) were measured during the cultivation of six commercial Pleurotus sp. strains on MMP media, on cereal grains (spawn) and on straw substrates (the three commonly utilized cultivation steps to obtain fruiting bodies) supplemented with several concentrations of autoclaved (OMW) or gamma-irradiated (iOMW) olive mill waste. Results indicated that all the strains were able to grow on MMP media and spawn containing up to 30% OMW and iOMW and on straw substrates mixed with 50% OMW. None of the strains showed AAO activity and there was not a single strain which showed the highest laccases and peroxidases activities, independently of the utilized substrate. Pleurotus mycelia adjusted their enzymatic mechanisms depending on their variety, type of substrate, concentration of OMW or iOMW added. OMW was a better supplement to use than iOMW because OMW induced higher exo-enzymes activities. 相似文献
12.
This study was focused on several physico-chemical and biological treatment methods that may affect the reduction of the organic load in olive mill wastewater (OMW). In this study, removal of 95% of the phenolic compounds present in OMW was achieved using sand filtration and subsequent treatment with powdered activated carbon in a batch system. This pretreatment for OMW was found to enhance the anaerobic activity of the sludge in the batch system significantly. The efficiency of organic load removal achieved by the anaerobic treatment of untreated OMW in batch reactors with tap water dilution factors below 1:10, reached approximately 65% chemical oxygen demand (COD) removal. However, in the up-flow sludge anaerobic blanket (UASB) reactor, COD removal efficiency of 80–85% was reached at a hydraulic retention time (HRT) of 5 days with an influent COD concentration of 40 g l−1 and organic loading rate (OLR)=8 g−1 COD l−1 per day. 相似文献
13.
Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed. 相似文献
14.
Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied. 相似文献
15.
G. Martinez-Garcia A.C. Johnson R.T. Bachmann C.J. Williams A. Burgoyne R.G.J. Edyvean 《International biodeterioration & biodegradation》2007,59(4):273-282
Olive mill wastewater (OMW) is a highly polluting wastewater, caused by a high organic load and phenol content. These characteristics suggest that it may be suitable for aerobic treatment and anaerobic bacterial digestion. Aerobic treatment coupled with anaerobic bacterial digestion may be economically feasible as the methane produced is a valuable energy source while simultaneously purifying the OMW. In an attempt to improve the overall performance of the process, the addition of a co-substrate such as whey to the aerobic treatment pre-treatment of OMW by the yeast Candida tropicalis was studied.The two-stage system operated satisfactorily up to an organic loading rate (OLR) of 3.0 kg COD L−1 day−1 with a biogas production rate of 1.25 Lbiogas Lreactor−1 day−1 and a total COD reduction in excess of 93% (62% COD reduction in aerobic pretreatment and 83% COD reduction in anaerobic digestion). Fifty-four percent of the phenol was biodegraded during the aerobic treatment stage, and biogas with between 68% and 75% methane was produced during anaerobic digestion. 相似文献
16.
Organic matter humification in olive oil mill wastewater by abiotic catalysis with manganese(IV) oxide 总被引:3,自引:0,他引:3
The chemical changes occurring in an olive oil mill wastewater (OMW) sample digested catalytically with MnO(2) for 30 and 60 days were evaluated comparatively with those occurring in the same OMW left standing for the same time in an open-air lagoon. Both treatments increased the pH and electrical conductivity and decreased the contents of dry matter, total organic C and total N, and C/N ratio of OMW. The humic acid (HA)-like fraction isolated from the fresh OMW was characterized by a marked aliphatic character, small O and acidic functional group contents, marked presence of proteinaceous materials, partially modified lignin moieties and polysaccharides-like structures, extended molecular heterogeneity, and small degrees of aromatic ring polycondensation, polymerization and humification. With increasing the time of either lagooning or catalytic digestion, a loss of aliphatic materials and an increase of extraction yield, oxygenation, acidic functional groups, carbohydrates and aromaticity occurred in the HA-like fractions. The more evident changes measured for the HA-like fractions from catalytically-digested OMW, with respect to those from lagooned OMW, indicated that MnO(2) was able to catalyze organic matter humification in OMW. 相似文献
17.
Αpostolos Vlyssides Elli Maria Barampouti Sofia Mai Michael Loizides 《Biodegradation》2010,21(6):957-965
Co-composting of the solid residues and wastewater from the olive oil production process was examined as a potential bioremediation treatment for these wastes. Experimental results from a semi batch laboratory pilot plant were reported. Composting was performed for 20 days under constant moisture 40% and the temperature ranged from 55 to 72°C and the oxygen partial pressure from 10 to 17%. An operational region of temperature and oxygen partial pressure was defined in order to achieve a ratio of total olive mill wastewater consumption to olive stone wooden residue stabilization equal or greater than 2.5, the typical ratio for an olive mill plant. Another critical parameter for the optimisation of the 20-day co-composting process that was examined was the biological efficiency of the process, as the carbon dioxide produced to the total carbon available to biomass. A strong sigmoid correlation of co-composting efficiency with temperature derived, reaching a maximum plateau of 0.50 at 68°C. The optimum conditions for a 20-day semi batch co-composting proved to be 68°C and 16–17% oxygen partial pressure, indicating that this process could be an integrated treatment scheme for olive mills. 相似文献
18.
Bio-degradation of olive mill wastewater sludge by its co-composting with agricultural wastes 总被引:9,自引:0,他引:9
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting. 相似文献
19.
J. Mann J. L. Markham P. Peiris N. Nair R. N. Spooner-Hart P. Holford 《World journal of microbiology & biotechnology》2010,26(3):567-571
Olive mill wastewater (OMWW) is a significant pollutant and its phytotoxicity is attributed mostly to the phenols present. 220 fungi were screened for their ability to produce detoxifying enzymes and/or grow in OMWW. Four isolates, species of Cerrena, Byssochlamys, Lasiodiplodia and Bionectria were selected and compared against Phanerochaete chrysosporium for their ability to bioremediate OMWW in the presence of a competing indigenous microflora. For the first time we report that a Cerrena sp. achieved a 75% reduction of phenolics in OMWW and that, unusually, the reduction occurred within 2 h of the addition to the OMWW. 相似文献
20.
Olive oil mill wastewater (OMWW) was used as a substrate for the culture of a mixture of edible fungi in order to obtain a
potentially useful microbial biomass and to induce a partial bioremediation of this fastidious waste. Before fermentation,
the OMWW underwent an alkaline-oxidative treatment with the aim of decreasing the polyphenolic content which is the main cause
of its toxicity. The fungal mixture grew fairly well in the treated OMWW and reached a maximum of biomass production within
about 14 days of fermentation at room temperature. Up to 150–160 g of wet biomass was obtained per liter of OMWW. Analysis
of the partially dehydrated biomass revealed a protein content of about 13 g% and 6 g% of row fiber. A relevant presence of
unsaturated fatty acids was found, as well as the presence of significant amounts of vitamins A and E, nicotinic acid, calcium,
potassium and iron. The possibility of using the microbial biomass produced from OMWW as an additive to animal feed is discussed. 相似文献