首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agrobacterium tumefaciens transfers T-DNA into the plant genome by a process mediated by Ti plasmid-encoded vir genes. Cleavage at T-DNA border sequences by the VirD endonuclease generates linear, single-stranded T-DNA molecules. In the work described in this report, we used electrophoretic mobility shift assays to show that the purified virE2 gene product binds to single-stranded DNA. VirE2 protein associates with T-DNA as shown by immunoprecipitation studies with VirE2-specific antiserum. The VirE2 protein was detected primarily in the cytoplasm, but also in the inner and outer membrane and periplasmic fractions. Virulence of a virE2 mutant was restored by mixed infection with strains carrying an intact vir region, but not with virA, virB, virD, virE, or virG mutants or chvA, chvB, or exoC mutants. We propose that the VirE2 protein is involved in the processing of T-DNA and in T-strand protection during transfer to the plant cell.  相似文献   

2.
Expression of Agrobacterium tumefaciens virulence (vir) genes is dependent on the presence of a conserved 'vir box' sequence in their 5' nontranscribed regions. The location and number of these sequences vary considerably in different vir genes. Site-directed mutagenesis was used to identify the functional vir box(es) of virB, virC and virD. For virB expression both vir box B1 and B2 are required but only the vir box B1 is absolutely essential. Of the five vir boxes of virC and virD two are required for virC expression while only one vir box is required for virD expression. To investigate the minimum sequences necessary for vir gene induction a deletion derivative of virE that lacks the vir box region was used. This mutant is not induced by acetosyringone. The inducibility of this promoter was restored when a synthetic deoxyoligonucleotide dGTTTCAATTGAAAC was introduced at a location analogous to that of the wild type vir box sequence. Mutational analysis indicate that the functional vir box sequence is 14 residues in length, contains a dyad symmetry and has the consensus sequence d ryTncAaTTGnAaY [corrected] (r = purine, y = pyrimidine).  相似文献   

3.
The virulence regulon of the Agrobacterium tumefaciens TiC58 plasmid is composed of six operons, virA, virB, virG, virC, virD and virE, which direct the transfer of T-DNA into plant cells. The 9.5 kbp virB operon is the largest of these operons and its entire nucleotide sequence was determined and found to contain eleven open reading frames (ORFs). Gene fusions of each VirB ORF to T7 phi 10 were made and overexpressed in Escherichia coli to confirm that they encode proteins of predicted size. Hydrophobic analysis of these peptide sequences revealed nine proteins that contain hydrophobic spanning regions including signal-peptide-like sequences. These data suggest that the majority of VirB proteins may associate with bacterial cell membranes, while the two additional proteins possess a potential ATP-binding site. Strong homologies in amino acid sequences were observed between nopaline- and octopine-type plasmids. Specific differences in amino acid sequence encoded by VirB ORFs of nopaline and octopine Ti plasmid and a functional role of the gene products are discussed.  相似文献   

4.
5.
Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes.   总被引:17,自引:11,他引:6       下载免费PDF全文
The virulence genes of nopaline (pTiC58) and octopine (pTiA6NC) Ti plasmids are similarly affected by the Agrobacterium tumefaciens ros mutation. Of six vir region complementation groups (virA, virB, virG, virC, virD, and virE) examined by using fusions to reporter genes, the promoters of only two (virC and virD) responded to the ros mutation. For each promoter that was affected by ros, the level of expression of its associated genes was substantially elevated in the mutant. This increase was not influenced by Ti plasmid-encoded factors, and the mutation did not interfere with the induction of pTiC58 vir genes by phenolic compounds via the VirA/VirG regulatory control mechanism. The effects of the ros mutation and acetosyringone were cumulative for all vir promoters examined. The pleiotropic characteristics of the ros mutant include the complete absence of the major acidic capsular polysaccharide.  相似文献   

6.
Transgenic loci obtained after Agrobacterium tumefaciens -mediated transformation can be simple, but fairly often they contain multiple T-DNA copies integrated into the plant genome. To understand the origin of complex T-DNA loci, floral-dip and root transformation experiments were carried out in Arabidopsis thaliana with mixtures of A. tumefaciens strains, each harboring one or two different T-DNA vectors. Upon floral-dip transformation, 6–30% of the transformants were co-transformed by multiple T-DNAs originating from different bacteria and 20–36% by different T-DNAs from one strain. However, these co-transformation frequencies were too low to explain the presence of on average 4–6 T-DNA copies in these transformants, suggesting that, upon floral-dip transformation, T-DNA replication frequently occurs before or during integration after the transfer of single T-DNA copies. Upon root transformation, the co-transformation frequencies of T-DNAs originating from different bacteria were similar or slightly higher (between 10 and 60%) than those obtained after floral-dip transformation, whereas the co-transformation frequencies of different T-DNAs from one strain were comparable (24–31%). Root transformants generally harbor only one to three T-DNA copies, and thus co-transformation of different T-DNAs can explain the T-DNA copy number in many transformants, but T-DNA replication is postulated to occur in most multicopy root transformants. In conclusion, the comparable co-transformation frequencies and differences in complexity of the T-DNA loci after floral-dip and root transformations indicate that the T-DNA copy number is highly determined by the transformation-competent target cells.  相似文献   

7.
The VirE2 single-stranded DNA-binding protein (SSB) of Agrobacterium tumefaciens is required for delivery of T-DNA to the nuclei of susceptible plant cells. By yeast two-hybrid and immunoprecipitation analyses, VirE2 was shown to self-associate and to interact with VirE1. VirE2 mutants with small deletions or insertions of a 31-residue oligopeptide (i31) at the N or C terminus or with an i31 peptide insertion at Leu236 retained the capacity to form homomultimers. By contrast, VirE2 mutants with modifications outside a central region located between residues 320 and 390 retained the capacity to interact with VirE1. These findings suggest the tertiary structure of VirE2 is important for homomultimer formation whereas a central domain mediates formation of a complex with VirE1. The capacity of VirE2 mutants to interact with full-length VirE2 in the yeast Saccharomyces cerevisiae correlated with the abundance of the mutant proteins in A. tumefaciens, suggesting that VirE2 is stabilized by homomultimerization in the bacterium. We further characterized the promoter and N- and C-terminal sequence requirements for synthesis of functional VirE2. A PvirB::virE2 construct yielded functional VirE2 protein as defined by complementation of a virE2 null mutation. By contrast, PvirE or Plac promoter constructs yielded functional VirE2 only if virE1 was coexpressed with virE2. Deletion of 10 or 9 residues from the N or C terminus of VirE2, respectively, or addition of heterologous peptides or proteins to either terminus resulted in a loss of protein function. However, an i31 peptide insertion at Tyr39 had no effect on protein function as defined by the capacity of the mutant protein to (i) interact with native VirE2, (ii) interact with VirE1, (iii) accumulate at abundant levels in A. tumefaciens, and (iv) restore wild-type virulence to a virE2 null mutant. We propose that Tyr39 of VirE2 corresponds to a permissive site for insertion of heterologous peptides or proteins of interest for delivery across kingdom boundaries.  相似文献   

8.
Coniothyrium minitans is a potential biological control agent of the plant pathogenic fungus Sclerotinia sclerotiorum. In this research, T-DNA insertional transformation of strain ZS-1 of C. minitans mediated by Agrobacterium tumefaciens was obtained, with optimization of spore maturity for transformation. After confirmation by PCR, transformants were subjected to Southern blot analysis, and results showed that more than 82.7% of transformants had single T-DNA insertions, and 12.1% of transformants had two copies T-DNA insertions. The genomic DNA segments of transformants flanking the T-DNA could be amplified from both borders with TAIL-PCR. Four types of mutants were screened and identified from the T-DNA insertional library, which comprised sporulation deficient mutants, pathogenicity deficient mutants, pigment change mutants and antibiotic deficient mutant, and some of the mutants were described; the number and frequency of each type of mutant from the library were calculated, and the frequency of each type is 3.27 x 10(-3), 1.0 x 10(-4), 1.4 x 10(-4), 2.5 x 10(-4), respectively. The successful creation of the T-DNA insertional transformation library may help us to unravel the interaction between a parasite and its host at a molecular level, to clarify the differentiation and development of this fungus, and to analyze and clone functional genes from the biocontrol microorganism in tripartite associations.  相似文献   

9.
T R Steck  T S Lin    C I Kado 《Nucleic acids research》1990,18(23):6953-6958
Virulence genes virD1 and virD2 are required for T-DNA processing in Agrobacterium tumefaciens. The regions within virD2 contributing to T-DNA processing and virulence were investigated. Some insertional mutations in virD2 prevented T-DNA border endonucleolytic cleavage and produced an avirulent phenotype. However, a non-polar insertion immediately after bp 684 of the 1344 bp open reading frame of virD2 did not inhibit endonucleolytic cleavage but still caused a loss of virulence. This suggested that in addition to T-DNA border cleaving activity, the VirD2 protein has another virulence function which resides in the C-terminal half of the protein. Comparative nucleotide sequence analyses of virD2 showed that the first 684 bp were 81% homologous to virD2 of an octopine Ti plasmid whereas the remaining 660 bp were only 44% homologous. A plasmid containing the virD region from octopine Ti plasmid could restore both virulence and processing to a nopaline virD2 mutant. No complementation resulted when a nopaline virD2 clone containing a region similar to eukaryotic nuclear envelope transport sequences was deleted from the 3' end. These results suggest that virD1 and only the first half of virD2 are required to encode for the T-DNA processing endonuclease, and that the 3'-half of virD2 encodes a function separate from endonuclease activity that is required for virulence.  相似文献   

10.
The VirD2 protein of Agrobacterium tumefaciens was shown to pilot T-DNA during its transfer to the plant cell nucleus. We analyze here its participation in the integration of T-DNA by using a virD2 mutant. This mutation reduces the efficiency of T-DNA transfer, but the efficiency of integration of T-DNA per se is unaffected. Southern and sequence analyses of integration events obtained with the mutated VirD2 protein revealed an aberrant pattern of integration. These results indicate that the wild-type VirD2 protein participates in ligation of the 5'-end of the T-strand to plant DNA and that this ligation step is not rate limiting for T-DNA integration.  相似文献   

11.
12.
Novel ‘super-binary’ vectors that carried two separate T-DNAs were constructed. One T-DNA contained a drug-resistance, selection-marker gene and the other contained a gene for β-glucuronidase (GUS). A large number of tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.) transformants were produced by Agrobacterium tume-faciens LBA4404 that carried the vectors. Frequency of co-transformation with the two T-DNAs was greater than 47%. GUS-positive, drug-sensitive progeny were obtained from more than half of the co-transformants. Molecular analyses by Southern hybridization and polymerase chain reactions confirmed integration and segregation of the T-DNAs. Thus, the non-selectable T-DNA that was genetically separable from the selection marker was integrated into more than a quarter of the initial, drug-resistant transformants. Since various DNA fragments may be inserted into the non-selectable T-DNA by a simple procedure, these vectors will likely be very useful for the production of marker-free transformants of diverse plant species. Delivery of two T-DNAs to plants from mixtures of A. tumefaciens was also tested, but frequency of co-transformation was relatively low.  相似文献   

13.
A simple system is described for detection of the transfer ofT-DNA from Agrobacterium cells to suspension-cultured tobaccoBY-2 cells. A modified reporter gene for rß-glucuronidase(GUS) that contained an intron sequence was introduced intothe T-DNA region such that the GUS protein could be synthesizedin plant cells only after transfer of the T-DNA to plant nuclei.When BY-2 cells were co-cultured with Agrobacterium cells thatcontained the modified reporter gene, transient synthesis ofGUS protein was observed between 36 and 48 h after the onsetof co-culture. The level of GUS activity reached a plateau withinas little as 48 h. This temporal profile of GUS activation suggeststhat the transient activity might have been due to expressionof the GUS gene in the T-DNA that had been transferred to theplant nuclei but had not yet been integrated into the plantchromosomes. Levels of transient GUS activity were also examinedwith various vir mutants of Agrobacterium and in a mutant withan altered chromosomal acvB gene, the gene for a protein thathas been postulated to function outside bacterial cells. Duringco-culture with virB, virD2, virD4 and acvB mutants, GUS activityremained at background levels, and the GUS activity in the caseof the virE2 mutant was thirty-fold lower than with the wildtype. On the basis of these results, we discuss the roles ofthese genes during infection by Agrobacterium of plant cells. 4Present address: Biochemistry Laboratory, Kanebo Ltd., 5-3-28Kotobuki-cho, Odawara, Kanagawa, 250 Japan  相似文献   

14.
Regulation of the vir genes of Agrobacterium tumefaciens plasmid pTiC58.   总被引:44,自引:25,他引:19       下载免费PDF全文
The virulence (vir) region of pTiC58 was screened for promoter activities by using gene fusions to a promoterless lux operon in the broad-host-range vector pUCD615. Active vir fragments contained the strongly acetosyringone-inducible promoters of virB, virC, virD, and virE and the weakly inducible promoters of virA and virG. Identical induction patterns were obtained with freshly sliced carrot disks, suggesting that an inducer is released after plant tissue is wounded. Optimal conditions for vir gene induction were pH 5.7 for 50 microM acetosyringone or sinapic acid. The induction of virB and virE by acetosyringone was strictly dependent on intact virA and virG loci. An increase in the copy number of virG resulted in a proportional, acetosyringone-independent increase in vir gene expression, and a further increase occurred only if an inducing compound and virA were present.  相似文献   

15.
The entire genome of the pRi1724 (217.6-kb) in the mikimopine type Agrobacterium rhizogenes strain MAFF03-01724 has been completely sequenced. The vir region covering 30.2-kb has found to be composed of 21 genes resembling virH1, virA, virB1-11, virG, virC1-2, and virD1-5. The structural organization of the pRi1724 vir operons in this study is exactly the same as that of the previously reported vir operons of other Ri or Ti plasmids, although the size of some ORFs showed little variations among the plasmids. We also found virE3 gene in the pRi1724 (1), but different from Ti plasmids, virE1 and virE2 that are also important for the virulence do not exist in the vir region of pRi1724.  相似文献   

16.
A large number of tobacco SR1 cell clones transformed by the wild-type Agrobacterium C58 have been analysed for the presence of screenable markers such as tumour morphology, opine synthesis and hormone dependence. Distinct phenotypic classes were observed depending upon whether the cell clones were isolated from primary tumours or were obtained via cocultivation of protoplasts. These classes of tobacco SR1-C58 transformants appear to arise from errors in the Ti plasmid (T-DNA) transfer and integration mechanism itself rather than from subsequent T-DNA rearrangements, since 900 subclones, obtained by recloning a wild-type SR1-C58-transformed cell clone, yielded no variation in the phenotypes. A detailed genomic T-DNA analysis showed the presence of characteristic, abnormally short T-DNAs in the teratoma-forming, Acs- class and also in the Nos- class. The abnormal right border in two Nos- clones ends close to a sequence that resembles the normal T-DNA terminus and lies adjacent to the nos promoter, suggesting that this sequence could have functioned as a recognition site directing these particular T-DNA transfers. On the basis of the phenotypic and genomic blotting data it is clear that the short T-DNAs are characteristic of the cocultivation method. Other phenomena causing phenotypic variation, such as the loss of the T-DNA, and the gradual repression of T-DNA gene expression by methylation, are the main causes of aberrations in primary tumours. Moreover, the physical data suggest that early in the transformation cycle of Agrobacterium a replication step of a preselected T-DNA occurs before integration into the plant genome.  相似文献   

17.
T-DNA integration in the nuclear plant genome may lead to rearrangements of the plant target site. Here we present evidence for a chromosomal inversion of 26 cM bordered by two T-DNAs in direct orientation, which is linked to the mgoun2 mutation. The integration sites of the T-DNAs map at positions 80 and 106 of chromosome I and we show that each T-DNA is bordered by plant sequences from positions 80 and 106, respectively. Although the T-DNAs are physically distant, they are genetically closely linked. In addition, three markers located on the chromosome segment between the two T-DNA integration sites show no recombination with the mgo2 mutation. We show that the inversion cannot be a consequence of a recombination event between the two T-DNAs, but that the integration of the T-DNAs and the inversion were two temporally linked events. T-DNA integration mechanisms that could have led to this inversion are discussed.  相似文献   

18.
The transferred DNA (T-DNA) is transported from Agrobacterium tumefaciens to the nucleus and is stably integrated into the genome of many plant species. It has been proposed that the VirD2 protein, tightly attached to the T-DNA, pilots the T-DNA into the plant cell nucleus and that it is involved in integration. Using agroinfection and beta-glucuronidase expression as two different very sensitive transient assays for T-DNA transfer, together with assays for stable integration, we have shown that the C-terminal half of the VirD2 protein and the VirD3 protein are not involved in T-DNA integration. However, the bipartite nuclear localization signal, which is located within the C terminus of the VirD2 protein and which has previously been shown to be able to target a foreign protein into the plant cell nucleus, was shown to be required for efficient T-DNA transfer. virD4 mutants were shown by agroinfection to be completely inactive in T-DNA transfer.  相似文献   

19.
20.
Stable transformation of plants by Agrobacterium T-DNAs requires that the transgene insert into the host chromosome. Although most of the Agrobacterium Ti plasmid genes required for this process have been studied in depth, few plant-encoded factors have been identified, although such factors, presumably DNA repair proteins, are widely presumed to exist. It has previously been suggested that the UVH1 gene product is required for stable T-DNA integration in Arabidopsis. Here we present evidence suggesting that uvh1 mutants are essentially wild type for T-DNA integration following inoculation via the vacuum-infiltration procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号