共查询到20条相似文献,搜索用时 15 毫秒
1.
Free- and EF-2-bound 80 S ribosomes, within the high-affinity complex with the non-hydrolysable GTP analog: guanylylmethylenediphosphonate (GuoPP(CH2)P), and the low-affinity complex with GDP, were treated with trypsin under conditions that modified neither their protein synthesis ability nor their sedimentation constant nor the bound EF-2 itself. Proteins extracted from trypsin-digested ribosomes were unambiguously identified using three different two-dimensional gel electrophoresis systems and 5 S RNA release was checked by submitting directly free- and EF-2-bound 80 S ribosomes, incubated with trypsin, to two-dimensional gel electrophoresis. Our results indicate that the binding of (EF-2)-GuoPP[CH2]P to 80 S ribosomes modified the behavior of a cluster of five proteins which were trypsin-resistant within free 80 S ribosomes and trypsin-sensitive within the high-affinity complex (proteins: L3, L10, L13a, L26, L27a). As for the binding of (EF-2)-GDP to 80 S ribosomes, it induced an intermediate conformational change of ribosomes, unshielding only protein L13a and L27a. Quantitative release of free intact 5 S RNA which occurred in the first case but not in the second one, should be related to the trypsinolysis of protein(s) L3 and/or L10 and/or L26. Results were discussed in relation to structural and functional data available on the ribosomal proteins we found to be modified by EF-2 binding. 相似文献
2.
Fluorescent techniques were used to study binding of peptide elongation factor Tu (EF-Tu) to Escherichia coli ribosomes and to determine the distances of the bound factor to points on the ribosome. Thermus thermophilus EF-Tu was labeled with 3-(4-maleimidylphenyl)-4-methyl-7-(diethyl-amino)coumarin (CPM) without loss of activity. In the presence of Phe-tRNA and a nonhydrolyzable analogue of GTP, 70S ribosomes bind the CPM-EF-Tu [Kb = (3 +/- 1.2) X 10(6) M-1] causing a decrease of CPM fluorescence. Binding of CPM-EF-Tu to 50S subunits was at least 1 order of magnitude lower than with 70S ribosomes, and binding to 30S subunits could not be detected. Reconstituted 70S ribosomes containing either S1 labeled with fluoresceinmaleimide or ribosomal RNAs labeled at their 3' ends with fluorescein thiosemicarbazide were used for energy transfer from CPM-EF-Tu. The distances between CPM-EF-Tu bound to the ribosomes and the 3' ends of 16S RNA, 5S RNA, 23S RNA, and the closest sulfhydryl group of S1 were calculated to be 82, 70, 73, and 62-68 A, respectively. 相似文献
3.
F Hernández A López-Rivas J A Pintor-Toro E Palacián 《European journal of biochemistry》1982,123(1):95-98
Modification of the 50-S subunits of Escherichia coli ribosomes with the arginine reagent phenylglyoxal produces inactivation of peptidyl transferase and inhibition of the binding of C(U)-A-C-C-A-LeuAc, phenylalanyl-tRNA and N-acetylphenylalanyl-tRNA to the ribosome. Hybridization experiments, using 1.25 M LiCl core particles and the corresponding split proteins from untreated and phenylglyoxal-treated 50-S subunits, indicate that inactivation and inhibition of binding are the effects of modification of a protein fraction, the functionality of the RNA moiety being unaffected by the reagent. The split proteins from phenylglyoxal-modified 50-S subunits are incorporated to 1.25 M LiCl core particles as well as those obtained from unmodified subunits, thus excluding the failure to bind as the cause of inactivation. In agreement with the general role played by the arginyl residues as positive binding sites for anionic ligands, the present results indicate that the arginyl residues of a protein fraction from 50-S subunits might be important in the binding of aminoacyl-tRNA and peptidyl-tRNA to ribosomes. 相似文献
4.
F Hernández A López-Rivas J A Pintor-Toro D Vázquez E Palacián 《European journal of biochemistry》1980,108(1):137-141
Modification of Escherichia coli robosomes with phenylglyoxal and butanedione, protein reagents specific for arginyl residues, inactivates polypeptide polymerization, assayed as poly(U)-dependent polyphenylalanine synthesis, and the binding of poly(U). Inactivation is produced by modification of the 30-S subunit. Both the RNA and the protein moieties of 30-S subunits are modified by phenylglyoxal, and modification of either of them is accompanied by inactivation of polypeptide synthesis. Modification of only the split proteins released from 30-S subunits by prolonged dialysis against a low-ionic-strength buffer, which contain mainly protein S1, produces inhibition of poly(U) binding and inactivation of polypeptide synthesis. Amino acid analysis of the modified split proteins showed a significant modifications of arginyl residues. These results indicate that the arginyl residues of a few 30-S proteins might be important in the interaction between mRNA and the 30-S subunit, which agrees with the general role assigned to the arginyl residues of proteins as the positively charged recognition site for anionic ligands. 相似文献
5.
Ricin and modeccin do not inhibit the elongation factor 1-dependent binding of aminoacyl-tRNA to ribosomes.
下载免费PDF全文

Ricin and modeccin do not affect the total number of ribosomes to which phenylalanyl-tRNA becomes bound in the EF 1-dependent reaction. Previous inconsistencies resulted from the use of the nitrocellulose-filter technique, which overestimates the number of control ribosomes engaged in the binding reaction if trace amounts of EF 2 contaminate the ribosomal preparations. 相似文献
6.
Methods of high-speed centrifugation and limited proteolysis were used to probe the interaction of EF-Tu with EF-Ts on the ribosome. It is shown that EF-Ts dissociates from EF-Tu only after EF-Tu-mediated GTP hydrolysis, i.e. EF-Ts within the EF-Tu.ribosome complexes in the pre-GTP-hydrolysis state co-sediments with the ribosomes and its rate of proteolysis is distinct from that of free EF-Ts. Moreover, as seen from the difference in sensitivity to trypsin of ribosomal proteins L19 and L27 EF-Ts affects the interaction of EF-Tu with the ribosome. 相似文献
7.
8.
9.
Carboxyl-terminal amino acid residues in elongation factor G essential for ribosome association and translocation. 总被引:3,自引:1,他引:3
下载免费PDF全文

The translocation of ribosomes on mRNA is carried out by cellular machinery that has been extremely well conserved across the entire spectrum of living species. This process requires elongation factor G (EF-G, or EF-2 in archaebacteria and eukaryotes), which is a member of the GTPase superfamily. Using genetic techniques, we have identified a series of mutated alleles of fusA (the Escherichia coli gene that encodes EF-G) that were unable to support protein synthesis in vivo. These alleles encode proteins with point mutations at codons 495 (a variant with a Q-to-P change at codon 495 [Q495P]), 502 (G502D), and 563 (G563D) and a nonsense mutation at codon 608. Biochemical analyses demonstrated that EF-G Q495P, G502D, and delta 608-703 were not disrupted in guanine nucleotide binding but were deficient in ribosome-dependent GTP hydrolysis and guanine nucleotide-dependent ribosome association. We propose that all of these mutations are present in a domain that is essential for ribosome association and that GTP hydrolysis was deficient as a secondary consequence of impaired binding to 70S ribosomes. 相似文献
10.
11.
The co-crystal structure of Thermus aquaticus elongation factor Tu.guanosine 5'- [beta,gamma-imido]triphosphate (EF-Tu.GDPNP) bound to yeast Phe-tRNA(Phe) reveals that EF-Tu interacts with the tRNA body primarily through contacts with the phosphodiester backbone. Twenty amino acids in the tRNA binding cleft of Thermus Thermophilus EF-Tu were each mutated to structurally conservative alternatives and the affinities of the mutant proteins to yeast Phe-tRNA(Phe) determined. Eleven of the 20 mutations reduced the binding affinity from fourfold to >100-fold, while the remaining ten had no effect. The thermodynamically important residues were spread over the entire tRNA binding interface, but were concentrated in the region which contacts the tRNA T-stem. Most of the data could be reconciled by considering the crystal structures of both free EF-Tu.GTP and the ternary complex and allowing for small (1.0 A) movements in the amino acid side-chains. Thus, despite the non-physiological crystallization conditions and crystal lattice interactions, the crystal structures reflect the biochemically relevant interaction in solution. 相似文献
12.
The mechanism of action of virginiamycin M on the binding of aminoacyl-tRNA to ribosomes directed by elongation factor Tu 总被引:1,自引:0,他引:1
Mitochondrial DNA from Ustilago cynodontis has been investigated in several of its properties. Its dG + dC content is equal to 33.5%; its buoyant density (1.698 g/cm3) is higher, by 5 mg/cm3, and its melting temperature (82.5 degrees C) is lower than expected for a bacterial DNA having the same base composition; the first derivative of its melting curve indicates a large compositional heterogeneity, its molarity of elution from hydroxyapatite is high, 0.28 M phosphate, and allows its partial separation from nuclear DNA. Degradation by micrococcal nuclease indicates that about 25% of the DNA is formed by stretches having no more than 15% dG + dC. Finally, the unit size of mitochondrial genome is about 50 X 10(6). In most of its properties, the mitochondrial genome of U. cynodontis presents strong analogies with that of Saccharomyces cerevisiae. A parallel investigation on mitochondrial DNA from Acanthamoeba castellanii which has as genome unit size of only 27 X 10(6), has shown that this shares with the former the dG + dC content (32.9%), the melting temperature (82.5 degrees C), a large compositional heterogeneity and a very similar pattern of micrococcal nuclease degradation; its buoyant density (1.692 g/cm3) and its molarity of elution from hydroxyapatite (0.25 M phosphate) are, however, normal, probably because of a different short-sequence pattern and the fact that its dA + dT-rich stretches are shorter, on the average. 相似文献
13.
14.
The present study has examined the requirements for the binding of rabbit reticulocyte elongation factor 1 (EF-1) to ribosomes under different assay conditions. When a centrifugation procedure was used to separate the ribosome EF-1 complex, the binding of EF-1 to ribosomes required GTP and Phe-tRNA, but not poly(U). The results suggested that undr these conditions a ternary complex, EF-1 . GTP . aminoacyl-tRNA, is necessary for the formation of a ribosome . EF-1 complex. However, when gel filtration was used to isolate the ribosome . EF-1 complex, only template and tRNA were required. These studie emphasize the fact that the procedure used to isolate the ribosome . EF-1 complex determines the requirements for stable complex formation. EF-1 can also interact with nucleic acids such as 28 S and 18 S rRNA, messenger RNA and DNA. In contrast to the binding to ribosomes, EF-1 binding to nucleic acids requires only Mg2+. 相似文献
15.
16.
Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation 总被引:10,自引:0,他引:10
Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S4 is located. During translocation, EF-G experiences an extensive reorientation, such that, after translocation, domain 4 reaches into the decoding center. The factor assumes different conformations before and after translocation. The structure of the ribosome is changed substantially in the pretranslocation state, in particular at the head-to-body junction in the 30S subunit, suggesting a possible mechanism of translocation. 相似文献
17.
When EF G2 from Escherichia coli or Pseudomonas fluorescens is pre-bound to ribosomes in the presence of GMD, or GTP and fusidic acid, a differential effect is observed on the subsequent EF Tu-catalyzed binding of aminoacyl-tRNA to ribosomes. The EF G from E. coli nearly completely prevents the binding reaction, whereas the corresponding factor from P. fluorescens displays a significantly lower inhibitory effect. Both EF G factors form stable complexes with ribosomes and are equally efficient in the polymerization reaction. The difference in inhibitory properties between the two factors persists over a wide range of NH4Cl concentration. 相似文献
18.
A novel mTOR-regulated phosphorylation site in elongation factor 2 kinase modulates the activity of the kinase and its binding to calmodulin 总被引:11,自引:0,他引:11
下载免费PDF全文

Eukaryotic elongation factor 2 (eEF2) kinase is an unusual calcium- and calmodulin-dependent protein kinase that is regulated by insulin through the rapamycin-sensitive mTOR pathway. Here we show that insulin decreases the ability of eEF2 kinase to bind calmodulin in a rapamycin-sensitive manner. We identify a novel phosphorylation site in eEF2 kinase (Ser78) that is located immediately next to its calmodulin-binding motif. Phosphorylation of this site is increased by insulin in a rapamycin-sensitive fashion. Regulation of the phosphorylation of Ser78 also requires amino acids and the protein kinase phosphoinositide-dependent kinase 1. Mutation of this site to alanine strongly attenuates the effects of insulin and rapamycin both on the binding of calmodulin to eEF2 kinase and on eEF2 kinase activity. Phosphorylation of Ser78 is thus likely to link insulin and mTOR signaling to the control of eEF2 phosphorylation and chain elongation. This site is not a target for known kinases in the mTOR pathway, e.g., the S6 kinases, implying that it is phosphorylated by a novel mTOR-linked protein kinase that serves to couple hormones and amino acids to the control of translation elongation. eEF2 kinase is thus a target for mTOR signaling independently of previously known downstream components of the pathway. 相似文献
19.
1. The amino acid composition of wheat germ EF2 differs to some extent from that of elongation factors from mammals and bacteria. 2. The purified wheat germ EF2, similarly as the factors from other sources, is active in the: EF1-dependent polymerization of phenylalanine; ribosome-dependent GTP hydrolysis; binding of guanosine nucleotides; and ADP-ribosylation in the presence of diphtheria toxin. Fusidic acid at a concentration of 1 mM inhibits all these EF2-dependent reactions. 3. Diphtheria toxin in the presence of NAD+ inhibits polymerization of phenylalanine but does not effect GTP binding to EF2. 4. Binding of GDP to wheat germ EF2 is inhibited by ribosomes. During interaction with ribosomes, GTP in EF2-GTP complex is rapidly hydrolysed to GDP. Both GTP and 5'-guanylmethylenediphosphonate competitively inhibit formation of the ribosome-EF2-GDP complex due to the replacement of GDP from the complex. The latter is stabilized by fusidic acid. 相似文献
20.
Cross-linking study on localization of the binding site for elongation factor 1 alpha on rat liver ribosomes 总被引:3,自引:0,他引:3
Complexes containing rat liver 80 S ribosomes, poly(uridylic acid), phenylalanyl-tRNA, elongation factor 1 alpha, and guanylyl(beta, gamma-methylene)-diphosphonate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 26 fractions by chromatography on carboxymethylcellulose. Each protein fraction was subjected to diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Four cross-linked pairs containing elongation factor 1 alpha were on the vertical line below the diagonal. The ribosomal protein spot of each pair was cut out from the gel plate and labeled with 125I. The labeled proteins were extracted from the gel and identified by two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both 60 S and 40 S subunits were identified: L12, L23, L39, S23/S24, and S26, three proteins of which had been found to be cross-linked also to elongation factor 2 (Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., and Ogata, K. (1986) Eur. J. Biochem. 156, 37-44). These results afford direct evidence that both elongation factors interact with partially overlapping sites on rat liver ribosomes. 相似文献