首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The small heat shock protein (sHsp), categorized into a class of molecular chaperones, binds and stabilizes denatured proteins for the purpose of preventing aggregation. The sHsps undergo transition between different oligomeric states to control their nature. We have been studying the function of sHsp of Sulfolobus tokodaii, StHsp14.0. StHsp14.0 exists as 24meric oligomer, and exhibits oligomer dissociation and molecular chaperone activity over 80°C. We constructed and characterized StHsp14.0 mutants with replacement of the C-terminal IKI to WKW, IKF, FKI and FKF. All mutant complexes dissociated into dimers at 50°C. Among them, StHsp14.0FKF is almost completely dissociated, probably to dimers. All mutants protected citrate synthase (CS) from thermal aggregation at 50°C. But, the activity of StHsp14.0FKF was the lowest. Then, we examined the complexes of StHsp14.0 mutants with denatured CS by SAXS. StHsp14.0WKW protects denatured CS by forming the globular complexes of 24 subunits and a substrate. StHsp14.0FKF also formed similar complex but the number of subunits in the complex is a little smaller. These results suggest that the dimer itself exhibits low chaperone activity, and a partially dissociated oligomer of StHsp14.0 protects a denatured protein from interacting with other molecules by surrounding it.  相似文献   

2.
Small heat shock proteins (sHsps), which are categorized into a class of molecular chaperones, bind and stabilize denatured proteins to prevent aggregation. The sHsps undergo transition between different oligomeric states to control their hydrophobicity. So far, only the structures of sHsps in large oligomeric states have been reported. Here we report the structure of StHsp14.0 from Sulfolobus tokodaii in the dimeric state, which is formed by means of a mutation at the C-terminal IXI/V motif. The dimer is the sole building block in two crystal forms, and the dimeric mode is the same as that in the large oligomers. The N-terminal helix has variety in its conformation. Furthermore, spectroscopic and biochemical experiments were performed to investigate the conformational variability at the N-terminus. The structural, dynamical and oligomeric properties suggest that chaperone activity of StHsp14.0 is mediated by partially dissolved oligomers.  相似文献   

3.
Saji H  Iizuka R  Yoshida T  Abe T  Kidokoro S  Ishii N  Yohda M 《Proteins》2008,71(2):771-782
Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the alpha-crystallin domain. Generally, sHsps exist as oligomers of 9-40 subunits, and the oligomers undergo reversible temperature-dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C-terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C-terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C-terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of beta-sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C-terminal region are responsible not only for assembly of the oligomer but also for the maintenance of beta-sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp.  相似文献   

4.
The small heat shock proteins (sHsps), which are widely found in all domains of life, bind and stabilize denatured proteins to prevent aggregation. The sHsps exist as large oligomers that are composed of 9–40 subunits and control their chaperone activity by the transition of the oligomeric state. Though the oligomeric transition is important for the biological function of most sHsps, atomic details have not been elucidated. Here, we report crystal structures in both the 24-meric and dimeric states for an sHsp, StHsp14.0 from Sulfolobus tokodaii, in order to reveal changes upon the oligomeric transition. The results indicate that StHsp14.0 forms a spherical 24-mer with a diameter of 115 Å. The diameter is defined by the inter-monomer angle in the dimer. The dimer structure in the dimeric state shows only small differences from that in the 24-meric state. Some significant differences are exclusively observed at the binding site for the C-terminus. Although a dimer has four interactive sites with neighboring dimers, the weakness of the respective interactions is indicated from the size-exclusion chromatography. The small structural changes imply an activation mechanism mediated by multiple weak interactions.  相似文献   

5.
Small heat shock protein is a ubiquitous molecular chaperone, which consists of a non-conserved N-terminal region followed by a conserved alpha-crystallin domain. To understand the role of the N-terminal region, we constructed N-terminal truncation mutants of StHsp14.0, the sHsp from Sulfolobus tokodaii strain 7. All the mutants formed a stable oligomeric complex similar to that of the wild type. Electron microscopy and size exclusion chromatography-multiangle light scattering showed that the N-terminal region should locate in the center of the oligomeric particle. The mutants exhibited reduced chaperone activity for the protection of 3-isopropylmalate dehydrogenase from thermal aggregation. This reduction correlates with lowered subunit exchange efficiency. The oligomeric structure was retained even after incubation at 90 degrees C. These results suggest that the N-terminal region of StHsp14.0 functions in the thermally induced disassembly of the complex.  相似文献   

6.
Citrate synthase (CS) is often used in chaperone assays since this thermosensitive enzyme aggregates at moderately increased temperatures. Small heat shock proteins (sHsps) are molecular chaperones specialized in preventing the aggregation of other proteins, termed substrate proteins, under conditions of transient heat stress. To investigate the mechanism whereby sHsps bind to and stabilize a substrate protein, we here used peptide array screening covering the sequence of porcine CS (P00889). Strong binding of sHsps was detected to a peptide corresponding to the most N-terminal α-helix in CS (amino acids Leu13 to Gln27). The N-terminal α-helices in the CS dimer intertwine with the C-terminus in the other subunit and together form a stem-like structure which is protruding from the CS dimer. This stem-like structure is absent in thermostable forms of CS from thermophilic archaebacteria like Pyrococcus furiosus and Sulfolobus solfatacarium. These data therefore suggest that thermostabilization of thermosensitive CS by sHsps is achieved by stabilization of the C- and N-terminae in the protruding thermosensitive softspot, which is absent in thermostable forms of the CS dimer.  相似文献   

7.
Hsp26: a temperature-regulated chaperone   总被引:27,自引:0,他引:27       下载免费PDF全文
Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like other sHsps, Hsp26 forms large oligomeric complexes. At heat shock temperatures, however, the 24mer chaperone complex dissociates. Interestingly, chaperone assays performed at different temperatures show that the dissociation of the Hsp26 complex at heat shock temperatures is a prerequisite for efficient chaperone activity. Binding of non-native proteins to dissociated Hsp26 produces large globular assemblies with a structure that appears to be completely reorganized relative to the original Hsp26 oligomers. In this complex one monomer of substrate is bound per Hsp26 dimer. The temperature-dependent dissociation of the large storage form of Hsp26 into a smaller, active species and the subsequent re-association to a defined large chaperone-substrate complex represents a novel mechanism for the functional activation of a molecular chaperone.  相似文献   

8.
Small heat shock proteins (sHsps) are molecular chaperones that specifically bind non-native proteins and prevent them from irreversible aggregation. A key trait of sHsps is their existence as dynamic oligomers. Hsp26 from Saccharomyces cerevisiae assembles into a 24mer, which becomes activated under heat shock conditions and forms large, stable substrate complexes. This activation coincides with the destabilization of the oligomer and the appearance of dimers. This and results from other groups led to the generally accepted notion that dissociation might be a requirement for the chaperone mechanism of sHsps. To understand the chaperone mechanism of sHsps it is crucial to analyze the relationship between chaperone activity and stability of the oligomer. We generated an Hsp26 variant, in which a serine residue of the N-terminal domain was replaced by cysteine. This allowed us to covalently crosslink neighboring subunits by disulfide bonds. We show that under reducing conditions the structure and function of this variant are indistinguishable from that of the wild-type protein. However, when the cysteine residues are oxidized, the dissociation into dimers at higher temperatures is no longer observed, yet the chaperone activity remains unaffected. Furthermore, we show that the exchange of subunits between Hsp26 oligomers is significantly slower than substrate aggregation and even inhibited in the presence of disulfide bonds. This demonstrates that the rearrangements necessary for shifting Hsp26 from a low to a high affinity state for binding non-native proteins occur without dissolving the oligomer.  相似文献   

9.
3-isopropylmalate dehydrogenase (IPMDH) from the psychrotrophic bacterium Vibrio sp. I5 has been expressed in Escherichia coli and purified. This cold-adapted enzyme is highly homologous with IPMDHs from other organisms, including mesophilic E. coli and thermophilic Thermus thermophilus bacteria. Its molecular properties are similar to these counterparts. Whereas the E. coli and T. thermophilus enzymes are hardly active at room temperature, the Vibrio IPMDH has reasonable activity below room temperature. The thermal stabilities, conformational flexibilities (hydrogen-deuterium exchange), and kinetic parameters of these enzymes were compared. The temperature dependence of the catalytic parameters of the three enzymes show similar but shifted profiles. The Vibrio IPMDH is a much better enzyme at 25 degrees C than its counterparts. With decreasing temperature i.e. with decreasing conformational flexibility, the specific activity reduces, as well; however, in the case of the Vibrio enzyme, the residual activity is still high enough for normal physiological operation of the organism. The cold-adaptation strategy in this case is achieved by creation of an extremely efficient enzyme, which has reduced but still sufficient activity at low temperature.  相似文献   

10.
Site-directed mutagenesis was used to evaluate the effects on structure and function of selected substitutions within and N-terminal to the core "alpha-crystallin" domain of the small heat-shock protein (sHsp) and molecular chaperone, human alphaB-crystallin. Five alphaB-crystallin mutants containing single amino acid substitutions within the core alpha-crystallin domain displayed a modest decrease in chaperone activity in aggregation assays in vitro and in protecting cell viability of E. coli at 50 degrees C in vivo. In contrast, seven alphaB-crystallin mutants containing substitutions N-terminal to the core alpha-crystallin domain generally resembled wild-type alphaB-crystallin in chaperone activity in vitro and in vivo. Size-exclusion chromatography, ultraviolet circular dichroism spectroscopy and limited proteolysis were used to evaluate potential structural changes in the 12 alphaB-crystallin mutants. The secondary, tertiary and quaternary structures of mutants within and N-terminal to the core alpha-crystallin domain were similar to wild-type alphaB-crystallin. SDS-PAGE patterns of chymotryptic digestion were also similar in the mutant and wild-type proteins, indicating that the mutations did not introduce structural modifications that altered the exposure of proteolytic cleavage sites in alphaB-crystallin. On the basis of the similarities between the sequences of human alphaB-crystallin and the sHsp Mj HSP16.5, the only sHsp for which there exists high resolution structural information, a three-dimensional model for alphaB-crystallin was constructed. The mutations at sites within the core alpha-crystallin domain of alphaB-crystallin identify regions that may be important for the molecular chaperone functions of sHsps.  相似文献   

11.
Small Hsps (sHsps) and the structurally related eye lens alpha-crystallins are ubiquitous stress proteins that exhibit ATP-independent molecular chaperone activity. We studied the chaperone activity of dodecameric wheat TaHsp16.9C-I, a class I cytosolic sHsp from plants and the only eukaryotic sHsp for which a high resolution structure is available, along with the related wheat protein TaHsp17.8C-II, which represents the evolutionarily distinct class II plant cytosolic sHsps. Despite the available structural information on TaHsp16.9C-I, there is minimal data on its chaperone activity, and likewise, data on activity of the class II proteins is very limited. We prepared purified, recombinant TaHsp16.9C-I and TaHsp17.8C-II and find that the class II protein comprises a smaller oligomer than the dodecameric TaHsp16.9C-I, suggesting class II proteins have a distinct mode of oligomer assembly as compared to the class I proteins. Using malate dehydrogenase as a substrate, TaHsp16.9C-I was shown to be a more effective chaperone than TaHsp17.8C-II in preventing heat-induced malate dehydrogenase aggregation. As observed by EM, morphology of sHsp/substrate complexes depended on the sHsp used and on the ratio of sHsp to substrate. Surprisingly, heat-denaturing firefly luciferase did not interact significantly with TaHsp16.9C-I, although it was fully protected by TaHsp17.8C-II. In total the data indicate sHsps show substrate specificity and suggest that N-terminal residues contribute to substrate interactions.  相似文献   

12.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, alpha-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.  相似文献   

13.
To characterize the thermal stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, urea-induced unfolding of the enzyme and of its mesophilic counterpart from Escherichia coli was investigated at various temperatures. The unfolding curves were analyzed with a three-state model for E.coli IPMDH and with a two-state model for T.thermophilus IPMDH, to obtain the free energy change DeltaG degrees of each unfolding process. Other thermodynamic parameters, enthalpy change DeltaH, entropy change DeltaS and heat capacity change DeltaC(p), were derived from the temperature dependence of DeltaG degrees. The main feature of the thermophilic enzyme was its lower dependence of DeltaG degrees on temperature resulting from a low DeltaC(p). The thermophilic IPMDH had a significantly lower DeltaC(p), 1.73 kcal/mol.K, than that of E.coli IPMDH (20.7 kcal/mol.K). The low DeltaC(p) of T.thermophilus IPMDH could not be predicted from its change in solvent-accessible surface area DeltaASA. The results suggested that there is a large structural difference between the unfolded state of T.thermophilus and that of E.coli IPMDH. Another responsible factor for the higher thermal stability of T.thermophilus IPMDH was the increase in the most stable temperature T(s). The DeltaG degrees maximum of T.thermophilus IPMDH was much smaller than that of E.coli IPMDH. The present results clearly demonstrated that a higher melting temperature T(m) is not necessarily accompanied by a higher DeltaG degrees maximum.  相似文献   

14.
Small heat shock proteins (sHsps) are a widespread and diverse class of molecular chaperones. In vivo, sHsps contribute to thermotolerance. Recent evidence suggests that their function in the cellular chaperone network is to maintain protein homeostasis by complexing a variety of non-native proteins. One of the most characteristic features of sHsps is their organization into large, sphere-like structures commonly consisting of 12 or 24 subunits. Here, we investigated the functional and structural properties of Hsp20.2, an sHsp from Archaeoglobus fulgidus, in comparison to its relative, Hsp16.5 from Methanocaldococcus jannaschii. Hsp20.2 is active in suppressing the aggregation of different model substrates at physiological and heat-stress temperatures. Electron microscopy showed that Hsp20.2 forms two distinct types of octahedral oligomers of slightly different sizes, indicating certain structural flexibility of the oligomeric assembly. By three-dimensional analysis of electron microscopic images of negatively stained specimens, we were able to reconstitute 3D models of the assemblies at a resolution of 19 Å. Under conditions of heat stress, the distribution of the structurally different Hsp20.2 assemblies changed, and this change was correlated with an increased chaperone activity. In analogy to Hsp20.2, Hsp16.5 oligomers displayed structural dynamics and exhibited increased chaperone activity under conditions of heat stress. Thus, temperature-induced conformational regulation of the activity of sHsps may be a general phenomenon in thermophilic archaea.  相似文献   

15.
The diverse family of alpha-crystallin-type small heat shock proteins (alpha-Hsps or sHsps) is characterised by a central, moderately conserved alpha-crystallin domain. Oligomerisation followed by dissociation of subparticles is thought to be a prerequisite for chaperone function. We demonstrate that HspH, a bacterial alpha-Hsp from the soybean-symbiont Bradyrhizobium japonicum, assembles into dynamic complexes freely exchanging subunits with homologous and heterologous complexes. The importance of the alpha-crystallin domain for oligomerisation and chaperone activity was tested by site-directed mutagenesis of 12 different residues. In contrast to mammalian alpha-Hsps, the majority of these mutations elicited severe structural and functional defects in HspH. The individual exchange of five amino acid residues throughout the alpha-crystallin domain was found to compromise oligomerisation to various degrees. Assembly defects resulting in complexes of reduced size correlated with greatly decreased or abolished chaperone activity, reinforcing that complete oligomerisation is required for functionality. Mutation of a highly conserved glycine (G114) at the C-terminal end of the alpha-crystallin domain specifically impaired chaperone activity without interfering with oligomerisation properties, indicating that this residue is critical for substrate interaction. The structural and functional importance of this and other residues is discussed in the context of a modeled three-dimensional structure of HspH.  相似文献   

16.
A hallmark of alpha-crystallin-type small heat shock proteins (sHsps) is their highly dynamic oligomeric structure which promotes intermolecular interactions involved in subunit exchange and substrate binding (chaperone-like activity). We studied the oligomeric features of two classes of bacterial sHsps by size exclusion chromatography and nanoelectrospray mass spectrometry. Proteins of both classes formed large complexes that rapidly dissociated upon dilution and at physiologically relevant heat shock temperatures. As the secondary structure was not perturbed, temperature- and concentration-dependent dissociations were fully reversible. Complexes formed between sHsps and the model substrate citrate synthase were stable and exceeded the size of sHsp oligomers. Small Hsps, mutated in a highly conserved glycine residue at the C-terminal end of the alpha-crystallin domain, formed labile complexes that disassembled more readily than the corresponding wild-type proteins. Reduced complex stability coincided with reduced chaperone activity.  相似文献   

17.
Small heat shock proteins (sHsps) can efficiently prevent the aggregation of unfolded proteins in vitro. However, how this in vitro activity translates to function in vivo is poorly understood. We demonstrate that sHsps of Escherichia coli, IbpA and IbpB, co-operate with ClpB and the DnaK system in vitro and in vivo, forming a functional triade of chaperones. IbpA/IbpB and ClpB support independently and co-operatively the DnaK system in reversing protein aggregation. A delta ibpAB delta clpB double mutant exhibits strongly increased protein aggregation at 42 degrees C compared with the single mutants. sHsp and ClpB function become essential for cell viability at 37 degrees C if DnaK levels are reduced. The DnaK requirement for growth is increasingly higher for delta ibpAB, delta clpB, and the double delta ibpAB delta clpB mutant cells, establishing the positions of sHsps and ClpB in this chaperone triade.  相似文献   

18.
Shi X  Wang Z  Yan L  Ezemaduka AN  Fan G  Wang R  Fu X  Yin C  Chang Z 《FEBS letters》2011,585(21):3396-3402
As a class of molecular chaperones, small heat shock proteins (sHsps) usually exist as multi-subunit spherical oligomers. In this study, we report that AgsA, a sHsp of Salmonella enterica serovar Typhimurium, spontaneously forms fibrils in vitro. These fibrils tend to be formed at elevated temperature and do not share the characteristics of amyloid. Interestingly, the fibril-forming AgsA is able to suppress the dithiothreitol-induced aggregation of insulin efficiently within a certain range of temperature. During this process, AgsA fibrils disappear and spherical complexes form between AgsA and insulin molecules. These data suggest that AgsA fibrils may represent a distinctive type of structural and functional form of sHsp from spherical oligomers. Our study provides new insights into sHsp structures and chaperone functions.  相似文献   

19.
A mutated version of the hygromycin B phosphotransferase (hph(mut)) gene from Escherichia coli, isolated by directed evolution at 75 degrees C in transformants of a thermophilic strain of Sulfolobus solfataricus, was characterized with respect to its genetic stability in both the original mesophilic and the new thermophilic hosts. This gene was demonstrated to be able to express the hygromycin B resistance phenotype and to be steadily maintained and propagated also in other, more thermophilic strains of S. solfataricus, i.e., up to 82 degrees C. Furthermore, it may be transferred to S. solfataricus cells by cotransformation with pKMSD48, another extrachromosomal element derived from the virus SSV1 of Sulfolobus shibatae, without any loss of stability and without affecting the replication and infectivity of this viral DNA. The hph(mut) and the wild-type gene products were expressed at higher levels in E. coli and purified by specific affinity chromatography on immobilized hygromycin B. Comparative characterization revealed that the mutant enzyme had acquired significant thermoresistance and displayed higher thermal activity with augmented catalytic efficiency.  相似文献   

20.
Hsp16.5, isolated from the hyperthermophilic Archaea Methanococcus jannaschii, is a member of the small heat-shock protein family. Small Hsps have 12- to 42-kDa subunit sizes and have sequences that are conserved among all organisms. The recently determined crystal structure of Hsp16.5 indicates that it consists discretely of 24 identical subunits. Using fluorescence resonance energy transfer, we show that at temperatures above 60 degrees C, the subunits of MjHsp16.5 freely and reversibly exchange with a rate constant of exchange at 68 degrees C of 0.067 min(-1). The subunit exchange reactions were strongly temperature-dependent, similar to the exchange reactions of the alpha-crystallins. The exchange reaction was specific to MjHsp16.5 subunits, as other sHsps such as alpha-crystallin were not structurally compatible and could not integrate into the MjHsp16.5 oligomer. In addition, we demonstrate that at temperatures as high as 70 degrees C, MjHsp16.5 retains its multimeric structure and subunit organization. Using insulin and alpha-lactalbumin as model target proteins, we also show that MjHsp16.5 at 37 degrees C is a markedly inefficient chaperone compared with other sHsps with these substrates. The results of this study support the hypothesis that MjHsp16.5 has a dynamic quaternary structure at temperatures that are physiologically relevant to M. jannaschii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号