首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mogami K  Kishi H  Kobayashi S 《FEBS letters》2005,579(2):393-397
Neutral sphingomyelinase (N-SMase) elevated nitric oxide (NO) production without affecting intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells in situ on aortic valves, and induced prominent endothelium-dependent relaxation of coronary arteries, which was blocked by N(omega)-monomethyl-L-arginine, a NO synthase (NOS) inhibitor. N-SMase induced translocation of endothelial NOS (eNOS) from plasma membrane caveolae to intracellular region, eNOS phosphorylation on serine 1179, and an increase of ceramide level in endothelial cells. Membrane-permeable ceramide (C(8)-ceramide) mimicked the responses to N-SMase. We propose the involvement of N-SMase and ceramide in Ca(2+)-independent eNOS activation and NO production in endothelial cells in situ, linking to endothelium-dependent vasorelaxation.  相似文献   

2.
Endothelial nitric oxide (NO) synthase (eNOS) is controlled by Ca(2+)/calmodulin and caveolin-1 in caveolae. It has been recently suggested that Na(+)/Ca(2+) exchanger (NCX), also expressed in endothelial caveolae, is involved in eNOS activation. To investigate the role played by NCX in NO synthesis, we assessed the effects of Na(+) loading (induced by monensin) on rat aortic rings and cultured porcine aortic endothelial cells. Effect of monensin was evaluated by endothelium-dependent relaxation of rat aortic rings in response to acetylcholine and by real-time measurement of NO release from cultured endothelial cells stimulated by A-23187 and bradykinin. Na(+) loading shifted the acetylcholine concentration-response curve to the left. These effects were prevented by pretreatment with the NCX inhibitors benzamil and KB-R7943. Monensin potentiated Ca(2+)-dependent NO release in cultured cells, whereas benzamil and KB-R7943 totally blocked Na(+) loading-induced NO release. These findings confirm the key role of NCX in reverse mode on Ca(2+)-dependent NO production and endothelium-dependent relaxation.  相似文献   

3.
In the pulmonary artery isolated from 1-week hypoxia-induced pulmonary hypertensive rats, endothelial NO production stimulated by carbachol was decreased significantly in in situ visualization using diaminofluorescein-2 diacetate and also in cGMP content. This change was followed by the decrease in carbachol-induced endothelium-dependent relaxation. Protein expression of endothelial NO synthase (eNOS) and its regulatory proteins, caveolin-1 and heat shock protein 90, did not change in the hypoxic pulmonary artery, indicating that chronic hypoxia impairs eNOS activity at posttranslational level. In the hypoxic pulmonary artery, the increase in intracellular Ca(2+) level stimulated by carbachol but not by ionomycin was reduced. We next focused on changes in Ca(2+) sensitivity of the eNOS activation system. A morphological study revealed atrophy of endothelial cells and a peripheral condensation of eNOS in hypoxic endothelial cells preserving co-localization between eNOS and Golgi or plasma membranes. However, eNOS was tightly coupled with caveolin-1, and was dissociated from heat shock protein 90 or calmodulin in the hypoxic pulmonary artery in either the presence or absence of carbachol. Furthermore, eNOS Ser(1177) phosphorylation in both conditions significantly decreased without affecting Akt phosphorylation in the hypoxic artery. In conclusion, chronic hypoxia impairs endothelial Ca(2+) metabolism and normal coupling between eNOS and caveolin-1 resulted in eNOS inactivity.  相似文献   

4.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

5.
The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (-)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca(2+) depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca(2+)-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca(2+)-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca(2+) depletion. Thus, under Ca(2+)-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca(2+)-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-L-arginine methyl ester, suggesting a functional relevance for this phenomenon.  相似文献   

6.
In the vasculature, nitric oxide (NO) is generated by endothelial NO synthase (eNOS) in a calcium/calmodulin-dependent reaction. With oxidative stress, the critical cofactor BH(4) is depleted, and NADPH oxidation is uncoupled from NO generation, leading to production of (O(2)*). Although phosphorylation of eNOS regulates in vivo NO generation, the effects of phosphorylation on eNOS coupling and O(2)* generation are unknown. Therefore, we phosphorylated recombinant BH(4)-free eNOS in vitro using native kinases and determined O(2)* generation using EPR spin trapping. Phosphorylation of Ser-1177 by Akt led to an increase (>50%) in maximal O(2)* generation from eNOS. Moreover, Ser-1177 phosphorylation greatly altered the Ca(2+) sensitivity of eNOS, such that O(2)* generation became largely Ca(2+)-independent. In contrast, phosphorylation of eNOS at Thr-495 by protein kinase Calpha (PKCalpha) had no effect on maximum activity or calcium sensitivity but decreased calmodulin binding and increased association with caveolin. In endothelial cells, eNOS-dependent O(2)* generation was stimulated by vascular endothelial growth factor that induced phosphorylation of Ser-1177. With PKC activation that led to phosphorylation of Thr-495, no inhibition of O(2)* generation occurred. As such, phosphorylation of eNOS at Ser-1177 is pivotal in the direct regulation of O(2)* and NO generation, altering both the Ca(2+) sensitivity of the enzyme and rate of product formation, whereas phosphorylation of Thr-495 indirectly affects this process through regulation of the calmodulin and caveolin interaction. Thus, Akt-mediated phosphorylation modulates eNOS uncoupling and greatly increases O(2)* generation from the enzyme at low Ca(2+) concentrations, and PKCalpha-mediated phosphorylation alters the sensitivity of the enzyme to other negative regulatory signals.  相似文献   

7.
The present study examined potential interactions between endothelial NO synthase (eNOS), heat shock protein (HSP)90, and Akt in vascular endothelial cells stimulated with globular adiponectin to produce nitric oxide (NO). Globular adiponectin-induced eNOS phosphorylation was accompanied by eNOS-HSP90-Akt complex formation, resulting in a dose-dependent increase in NO release. Globular adiponectin stimulated binding of HSP90 to eNOS, and inhibition of HSP90 significantly suppressed globular adiponectin-stimulated NO release. Globular adiponectin also caused Akt phosphorylation, and inhibition of PI3 kinase significantly suppressed globular adiponectin-stimulated NO release. This study also examined whether globular adiponectin really induces endothelial-dependent vasodilation using rings from rat thoracic aorta. It was observed that globular adiponectin caused dose-dependent vasorelaxation in the aorta. These results indicate that stimulated HSP90 binding to eNOS and activation of the PI3-Akt pathway contribute to globular adiponectin-induced eNOS phosphorylation and NO production, and to endothelium-dependent vasorelaxation.  相似文献   

8.
Little is known about the effects of human free apolipoprotein A-I (Free-Apo A-I) and pre-beta-high density lipoprotein (pre-beta-HDL) on the endothelium function. In this study, we have investigated the effects of Free-Apo A-I and artificial pre-beta-HDL on endothelial NO synthase (eNOS) activity and on NO production by endothelial cells. Free-Apo A-I drastically inhibited NO production in human umbilical cord vein endothelial cells (HUVECs) and eNOS activity in bovine aortic endothelial cells (BAECs). Pre-beta-HDL and serum from human apolipoprotein A-I transgenic rabbits inhibited eNOS activity in BAECs but HDL3 did not. Free-Apo A-I displaced eNOS from BAEC plasma membrane towards intracellular pools without affecting eNOS activity and eNOS mass in BAEC crude homogenates. Free-Apo A-I and HDL3 did not decrease either caveolin bound to BAEC plasma membrane or caveola cholesterol content. As previously described, we showed that HDL3 directly induced endothelium-dependent relaxation of rings from rat aorta. We observed that pre-beta-HDL significantly decreased endothelium-dependent relaxation of rat aortic rings ex vivo.  相似文献   

9.
Pregnancy and the follicular phase of the ovarian cycle show elevation of uterine blood flow and associated increases in uterine artery endothelium (UAE) endothelial nitric oxide (NO) synthase (eNOS) expression. Nonetheless, a role for increased NO production during pregnancy and the follicular phase has only been inferred by indirect measures. The recent development of a uterine artery endothelial cell model further suggests that pregnancy is associated with reprogramming of cell signaling, such that eNOS may become more Ca(2+) sensitive and be subject to regulation by Ca(2+)-independent kinases. This study describes for the first time the direct and simultaneous monitoring of NO production and intracellular free Ca(2+) concentration ([Ca(2+)](i)) in freshly isolated UAE from pregnant, follicular, and luteal sheep. The pharmacological agonists ionomycin (calcium ionophore) and thapsigargin (TG; endoplasmic reticulum Ca(2+) pump inhibitor) were used to maximally elevate [Ca(2+)](i) and fully activate eNOS as a measure of eNOS expression. NO production stimulated by ionomycin (5 microM) and TG (10 microM) were 1.95- and 2.05-fold, respectively, in pregnant-UAE and 1.34- and 1.37-fold in follicular-UAE compared with luteal-UAE. In contrast, the physiological agonist ATP (100 microM) stimulated a 3.43-fold increase in NO in pregnant-UAE and a 1.90-fold increase in follicular-UAE compared with luteal-UAE, suggesting that pregnancy and follicular phase enhance eNOS activation beyond changes in expression in vivo. 2-aminoethoxydiphenyl borate (APB; an inositol 1,4,5-trisphosphate receptor blocker) totally prevented the ATP-induced [Ca(2+)](i) response but only partially inhibited NO production. Thus pregnancy-enhanced eNOS activation in UAE is mediated through [Ca(2+)](i)-insensitive pathways as well as through a greater eNOS sensitivity to [Ca(2+)](i).  相似文献   

10.
Wang GJ  Tseng HW  Chou CJ  Tsai TH  Chen CT  Lu MK 《Life sciences》2003,73(21):2769-2783
Antrodia camphorata, a medicinal fungus, has been used to treat cardiovascular diseases such as hypertension for many years. The purpose of this study was to examine the effects of mycelia extracts, from five Antrodia camphorata strains, on vascular tension and underlying mechanisms were explored. In isolated rat aortic rings, accession B86 caused concentration-dependent vasorelaxation with maximal relaxation of 40.34 +/- 7.53% whereas accessions 35398, 35396 and B71 had mild vasorelaxing effects. Strain B85 evoked potent vasorelaxation, partly through an endothelium-dependent mechanism that was inhibited by Nomega-nitro-L-arginine and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ) but not by antagonist of K+ channels, tetraethylammonium. In cultured endothelial cells, B85 stimulated nitric oxide (NO) release and augmented the level of the intracellular Ca2+ concentration. HPLC and LC-MS-MS analysis revealed the presence of adenosine. Our results suggest that B85 produced strongest vasorelaxation in aortic preparations among five test strains. B85 acts in part on endothelial cells by activating the Ca(2+)-NO-cGMP pathway to reduce smooth muscle tone. However, K+ channels had no apparent roles. Adenosine could possibly be involved in the endothelium-dependent pathway of B85-induced vasorelaxation.  相似文献   

11.
Protein palmitoylation represents an important mechanism governing the dynamic subcellular localization of many signaling proteins. Palmitoylation of endothelial nitric-oxide synthase (eNOS) promotes its targeting to plasmalemmal caveolae; agonist-promoted depalmitoylation leads to eNOS translocation. Depalmitoylation and translocation of eNOS modulate the agonist response, but the pathways that regulate eNOS palmitoylation and depalmitoylation are poorly understood. We now show that the newly characterized acyl-protein thioesterase 1 (APT1) regulates eNOS depalmitoylation. Immunoblot analyses indicate that APT1 is expressed in bovine aortic endothelial cells, which express eNOS. APT1 overexpression appears to accelerate the depalmitoylation of eNOS in COS-7 cells cotransfected with eNOS and APT1 cDNAs. Additionally, purified recombinant APT1 depalmitoylates eNOS assayed in biological membranes isolated from endothelial cells biosynthetically labeled with [(3)H]palmitate or COS-7 cells transfected with eNOS cDNA. More important, the APT1-catalyzed depalmitoylation of palmitoyl-eNOS is potentiated by Ca(2+)-calmodulin (CaM), a key allosteric activator of eNOS. In contrast, APT1-catalyzed depalmitoylation of the G protein Galpha(s) is unaffected by Ca(2+)-CaM. Furthermore, caveolin, a palmitoylated membrane protein, does not appear to be a substrate for APT1. Taken together, these results support a role for APT1 in the regulation of eNOS depalmitoylation and suggest that Ca(2+)-CaM activation of eNOS renders the enzyme more susceptible to APT1-catalyzed depalmitoylation.  相似文献   

12.
Acute administration of 17beta-estradiol (E(2)) exerts antiatherosclerotic effects in healthy postmenopausal women. The vasoprotective action of E(2) may be partly accounted for by a rapid increase in nitric oxide (NO) levels in endothelial cells (ECs). However, the signaling mechanisms producing this rise are unknown. In an attempt to address the short-term effect of E(2) on endothelial NO production, confluent bovine aortic endothelial cells (BAECs) were incubated in the absence or presence of E(2), and NO production was measured. Significant increases in NO levels were detected after only 5 min of E(2) exposure without a change in the protein levels of endothelial NO synthase (eNOS). This short-term effect of estrogen was significantly blunted by various ligands which decrease intracellular Ca(2+) concentration. Furthermore, plasma membrane-impermeable BSA-conjugated E(2) (E(2)BSA) stimulated endothelial NO release, indicating that in the current system the site of action of E(2) is on the plasma membrane rather than the classical nuclear receptor. The partial antagonist tamoxifen did not block E(2)-induced NO production; however, a pure estrogen receptor alpha (ERalpha) antagonist ICI 182,780 completely inhibited E(2)-stimulated NO release. The binding of E(2) to the membrane was confirmed using FITC-labeled E(2)BSA (E(2)BSA-FITC). Western blot analysis showed that plasmalemmal caveolae possess ERalpha in addition to well-known caveolae-associated proteins eNOS and caveolin. This study demonstrates that the nongenomic and short-term effect of E(2) on endothelial NO release is Ca(2+)-dependent and occurs via ERalpha localized in plasmalemmal caveolae.  相似文献   

13.
Shear stress stimulates NO production involving the Ca2+-independent mechanisms in endothelial cells. We have shown that exposure of bovine aortic endothelial cells (BAEC) to shear stress stimulates phosphorylation of eNOS at S635 and S1179 by the protein kinase A- (PKA-) dependent mechanisms. We examined whether phosphorylation of S635 of eNOS induced by PKA stimulates NO production in a calcium-independent manner. Expression of a constitutively active catalytic subunit of PKA (Cqr) in BAEC induced phosphorylation of S635 and S1179 residues and dephosphorylation of T497. Additionally, Cqr expression stimulated NO production, which could not be prevented by treating cells with the intracellular calcium chelator BAPTA-AM. To determine the role of each eNOS phosphorylation site in NO production, HEK-293 cells transfected with eNOS point mutants whereby S116, T497, S635, and S1179 were mutated to either A or D. Maximum NO production from S635D-expressing cells was significantly higher than that of either wild type or S635A in both basal and elevated [Ca2+]i conditions. More interestingly, S635D cells produced NO even when [Ca2+]i was nearly depleted by BAPTA-AM. We confirmed these results obtained in HEK-293 cells in BAEC transfected with S635D, S635A, or wild-type eNOS vector. These findings suggest that, once phosphorylated at S635 residue, eNOS produces NO without requiring any changes in [Ca2+]i. PKA-dependent phosphorylation of eNOS S635 and subsequent basal NO production in a Ca2+-independent manner may play an important role in regulating vascular biology and pathophysiology.  相似文献   

14.
In vitro extracellular Mg(2+) concentration ([Mg(2+)](0)) produces endothelium-dependent and endothelium-independent relaxations in rat aorta in a concentration-dependent manner. These relaxant effects of Mg(2+) on intact rat aortic rings, but not denuded rat aortic rings, were suppressed by either N(G)-monomethyl-L-arginine (L-NMMA), N(omega)-nitro-L-arginine methyl ester (L-NAME), or methylene blue. The inhibitory effects of L-NMMA and L-NAME could be reversed partly by L-arginine. [Mg(2+)](0)-induced dilatation in vivo in rat mesenteric arterioles and venules was almost completely inhibited by N(G)-nitro-L-arginine and L-NMMA. Removal of extracellular Ca(2+) concentration ([Ca(2+)](0)) or buffering intracellular Ca(2+) concentration in endothelial cells, with 10 microM 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, markedly attenuated the relaxant effects of Mg(2+). Mg(2+) produced nitric oxide (NO) release from the intact aortic rings in a concentration-dependent manner. Removal of [Ca(2+)](0) diminished the increased NO release induced by elevated levels of [Mg(2+)](0). In vivo infusion of increasing doses (1-30 microM/min) of MgSO(4), directly into the femoral veins of anesthetized rats, elicited significant concentration-dependent sustained increases in serum total Mg and concomitant decreases in arterial blood pressure. Before and after employment of various doses of MgSO(4), intravenous administration of either L-NMMA (10 mg/kg) or L-NAME (10 mg/kg) increased (i.e., reversed) the MgSO(4)-lowered blood pressure markedly, and intravenous injection of L-arginine restored partially the increased blood pressure effects of both L-NMMA and L-NAME. Our results suggest that 1) small blood vessels are very dependent on NO release for Mg(2+) dilatations and 2) the endothelium-dependent relaxation induced by extracellular Mg(2+) is mediated by release of endothelium-derived relaxing factor-NO from the endothelium, and requires Ca(2+) and formation of guanosine 3',5'-cyclic monophosphate.  相似文献   

15.
Attenuated vasoconstrictor reactivity following chronic hypoxia (CH) is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and diminished intracellular [Ca(2+)]. We tested the hypothesis that increased production of nitric oxide (NO) after CH contributes to blunted vasoconstrictor responsiveness. We found that basal NO production of mesenteric arteries from CH rats (barometric pressure = 380 Torr; 48 h) was greater than that of controls (barometric pressure = 630 Torr). In addition, studies employing pressurized mesenteric arteries (100-200 microM ID) abluminally loaded with the Ca(2+) indicator fura 2-AM demonstrated that although NO synthase (NOS) inhibition normalized agonist-induced vasoconstrictor responses between groups, VSM cell [Ca(2+)] in vessels from CH rats remained diminished compared with controls. To determine whether elevated NO production following CH results from increased NOS protein levels, we performed Western blots for NOS isoforms by using mesenteric arteries from control and CH rats. Endothelial NOS levels did not differ between groups, and other NOS isoforms were not detected in these samples. Selective endothelial loading of fura 2-AM was employed to test the hypothesis that elevated endothelial cell [Ca(2+)] following CH accounts for enhanced NOS activity. These experiments demonstrated greater endothelial cell [Ca(2+)] in mesenteric arteries isolated from CH rats compared with controls. We conclude that enhanced production of NO resulting from elevated endothelial cell [Ca(2+)] contributes to attenuated reactivity following CH by decreasing VSM cell Ca(2+) sensitivity.  相似文献   

16.
Vasodilator actions of insulin are mediated by activation of endothelial nitric-oxide synthase (eNOS) and subsequent production of NO. Phosphatidylinositol 3-kinase and Akt play important roles in insulin-signaling pathways leading to production of NO in vascular endothelium. Here we dissected mechanisms whereby insulin activates eNOS by using the fluorescent dye DAF-2 to directly measure NO production in single cells. Insulin caused a rapid increase in intracellular NO in NIH-3T3(IR) cells transiently transfected with eNOS. The stimulation of NO production by lysophosphatidic acid (LPA) was abrogated by pretreatment of cells with the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Remarkably, in the same cells, insulin-stimulated production of NO was unaffected. However, cells expressing the eNOS-S1179A mutant (disrupted Akt phosphorylation site) did not produce detectable NO in response to insulin, whereas the response to LPA was similar to that observed in cells expressing wild-type eNOS. Moreover, production of NO in response to insulin was blocked by coexpression of an inhibitory mutant of Akt, whereas the response to LPA was unaffected. Phosphorylation of eNOS at Ser(1179) was observed only in response to treatment with insulin, but not with LPA. Interestingly, platelet-derived growth factor treatment of cells activated Akt but not eNOS. Results from human vascular endothelial cells were qualitatively similar to those obtained in transfected NIH-3T3(IR) cells, although the magnitude of the responses was smaller. We conclude that insulin regulates eNOS activity using a Ca(2+)-independent mechanism requiring phosphorylation of eNOS by Akt. Importantly, phosphorylation-dependent mechanisms that enhance eNOS activity can operate independently from Ca(2+)-dependent mechanisms.  相似文献   

17.
Liang X  Luo XL  Zhong H  Hu QH  He F 《生理学报》2012,64(3):289-295
To investigate the effect of Ca(2+)-sensing receptor (CaR) on Spermine-induced extracellular Ca(2+) influx and NO generation in human umbilical vein endothelial cells (HUVEC), the small interference RNA (siRNA) specifically targeting CaR gene was designed, synthesized and transfected into HUVEC according to the cDNA sequence of human CaR gene in GenBank. The transfection efficiency and the interference efficiency of CaR protein were determined by laser scanning confocal microscopy and Western blot, respectively. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured by Fura-2/AM loading. The production of NO and the activity of endothelial nitric oxide synthase (eNOS) were determined by the DAF-FM diacetate (DAF-FM DA). Western blot results demonstrated that siRNA targeting the CaR specifically decreased the expression of CaR protein in CaR siRNA group 48 h after transfection (P < 0.05). At the same time, the Spermine-induced [Ca(2+)](i), eNOS activity and NO generation were also significantly reduced (P < 0.05) in CaR siRNA group compared with those in the untransfected or negative siRNA transfected group. In conclusion, the present study suggests that the CaR plays an important role in the Spermine-evoked process of extracellular Ca(2+) influx and NO generation in HUVEC.  相似文献   

18.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

19.
Nitric oxide (NO) plays an important role in the control of vascular tone. NO donors have therapeutic use and the most used NO donors, nitroglycerin and sodium nitroprusside have problems in their use. Thus, new NO donors have been synthesized to minimize these undesirable effects. Nytrosil ruthenium complexes have been studied as a new class of NO donors. trans-[RuCl([15]aneN(4))NO](2+), induces vasorelaxation only in presence of reducing agent. In this study, we characterized the mechanisms of vasorelaxation of trans-[RuCl([15]aneN(4))NO](2+) in denuded rat aorta and identified which NO forms are involved in this relaxation. We also evaluated the effect of this NO donor in decreasing the cytosolic Ca(2+) concentration ([Ca(2+)]c) of the vascular smooth muscle cells. Vasorelaxation to trans-[RuCl([15]aneN(4))NO](2+) (E(max): 101.8 +/- 2.3%, pEC(50): 5.03 +/- 0.15) was almost abolished in the presence of the NO* scavenger hydroxocobalamin (E(max): 4.0 +/- 0.4%; P < 0.001) and it was partially inhibited by the NO(-) scavenger L-cysteine (E(max): 79.9 +/- 6.9%, pEC(50): 4.41 +/- 0.06; P < 0.05). The guanylyl cyclase inhibitor ODQ reduced the E(max) (57.7 +/- 4.0%, P < 0.001) and pEC(50) (4.21 +/- 0.42, P < 0.01) and the combination of ODQ and TEA abolished the response to trans-[RuCl([15]aneN(4))NO](2+). The blockade of voltage-dependent (K(v)), ATP-sensitive (K(ATP)), and Ca(2+)-activated (K(Ca) K(+) channels reduced the vasorelaxation induced by trans-[RuCl([15]aneN(4))NO](2+). This compound significantly reduced [Ca(2+)]c (from 100% to 85.9 +/- 3.5%, n = 4). In conclusion, our data demonstrate that this NO donor induces vascular relaxation involving NO* and NO(-) species, that is associated to a decrease in [Ca(2+)]c. The mechanisms of vasorelaxation involve guanylyl cyclase activation, cGMP production and K(+) channels activation.  相似文献   

20.
Although molecular changes accompanying leukocyte extravasation have been investigated intensively, the particular events following leukocyte adhesion and leading to the actual transendothelial migration process remain largely unknown. To characterize intraendothelial signals elicited by leukocyte adhesion and functionally required for their transmigration, we recorded endothelial free cytosolic intracellular Ca(2+)levels ([Ca(2+)]i) during the course of leukocyte adhesion. We show that monocyte and granulocyte adhesion induced Ca(2+)transients in either untreated or TNF-alpha-stimulated microvascular endothelial cells (HMEC-1). The functional significance of these [Ca(2+)]i rises was demonstrated by treating filter-grown endothelial monolayers with BAPTA/AM. This in traendothelial Ca(2+)chelation left monocyte adhesion basically unaffected, but caused a significant and dose-dependent reduction of the transendothelial migration of monocytes. Granulocyte diapedesis, on the other hand, was hardly modified. Thapsigargin-treatment of endothelial cells almost completely inhibited the transmigration of monocytes suggesting that the necessary Ca(2+)transients depended on a release from intracellular Ca(2+)stores. Our results thus show that the transmigration of monocytes through endothelial monolayers of microvascular origin is favoured by an increase of the intraendothelial [Ca(2+)]i induced by leukocyte adhesion to the endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号