首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Revealing selectivity mechanism of cyclin-dependent kinases (CDK) and their inhibitors is an important issue to develop potential anticancer drugs. The substituted 4-(Pyrazol-4-yl)-pyrimidines are potent inhibitors of CDK4 but not of the highly homologous CDK2. In order to reveal the inhibitory selectivity of these inhibitors to CDK4 over CDK2, we select one of substituted 4-(Pyrazol-4-yl)-pyrimidines as a representative (marked as A1 hereunder) and perform molecular docking, molecular dynamics simulations and binding free energy analysis for CDK4/A1 and CDK2/A1, respectively. The electrostatic and van der Waals (vdW) interactions of the A1 inhibitor with CDK4/CDK2 are discussed. The computed binding free energies based on the MM-PBSA method are consistent with experimental bioactivity ranking of A1 inhibitor to CDK4/CDK2. On the other hand, the conformational characteristics of CDK2 and CDK4 induced by A1 inhibitor are analysed and revealed. Results demonstrate that the vdW interactions considerably contribute to binding of CDK4/CDK2 with A1 inhibitor and are similar in size. The hydrogen bonding between A1 inhibitor and CDK4/CDK2 is considerably favourable to the binding, in which the hydrogen bond between the NH group of the pyrazole group of A1 and the residue Asp158 of CDK4 plays a crucial role in inhibitory selectivity of A1 inhibitor to CDK4 over CDK2. The electrostatic interaction energy differences between the corresponding residues of CDK4/A1 and CDK2/A1 confirm the above inference. The conformational changes of CDK2 and CDK4 induced by A1 inhibitor influence the selectivity of A1 inhibitor to CDK4/CDK2.  相似文献   

2.
Genetic alteration of one or more components of the p16(INK4A)-CDK4,6/cyclin D-retinoblastoma pathway is found in more than half of all human cancers. Therefore, CDK4 is an attractive target for the development of a novel anticancer agent. However, it is difficult to make CDK4-specific inhibitors that do not possess activity for other kinases, especially CDK2, because the CDK family has high structural homology. The three-dimensional structure of CDK2, particularly that bound with the inhibitor, has provided useful information for the synthesis of CDK2-specific inhibitors. The same approach used to make CDK4-specific inhibitors was hindered by the failure to obtain a crystal structure of CDK4. To overcome this problem, we synthesized a CDK4 mimic CDK2 protein in which the ATP binding pocket of CDK2 was replaced with that of CDK4. This CDK4 mimic CDK2 was crystallized both in the free and inhibitor-bound form. The structural information thus obtained was found to be useful for synthesis of a CDK4-specific inhibitor that does not have substantial CDK2 activity. Namely, the data suggest that CDK4 has additional space that will accommodate a large substituent such as the CDK4 selective inhibitor. Inhibitors designed to bind into this large cavity should be selective for CDK4 without having substantial CDK2 activity. This design principle was confirmed in the x-ray crystal structure of the CDK4 mimic CDK2 with a new CDK4 selective inhibitor bound.  相似文献   

3.
Cyclin-dependent kinase 7 (CDK7) is the catalytic subunit of the metazoan CDK-activating kinase (CAK), which activates CDKs, such as CDC2 and CDK2, through phosphorylation of a conserved threonine residue in the T loop. Full activation of CDK7 requires association with a positive regulatory subunit, cyclin H, and phosphorylation of a conserved threonine residue at position 170 in its own T loop. We show that threonine-170 of CDK7 is phosphorylated in vitro by its targets, CDC2 and CDK2, which also phosphorylate serine-164 in the CDK7 T loop, a site that perfectly matches their consensus phosphorylation site. In contrast, neither CDK4 nor CDK7 itself can phosphorylate the CDK7 T loop in vitro. The ability of CDC2 or CDK2 and CDK7 to phosphorylate each other but not themselves implies that each kinase can discriminate among closely related sequences and can recognize a substrate site that diverges from its usual preferred site. To understand the basis for this paradoxical substrate specificity, we constructed a chimeric CDK with the T loop of CDK7 grafted onto the body of CDK2. Surprisingly, the hybrid enzyme, CDK2-7, was efficiently activated in cyclin A-dependent fashion by CDK7 but not at all by CDK2. CDK2-7, moreover, phosphorylated wild-type CDK7 but not CDK2. Our results suggest that the primary amino acid sequence of the T loop plays only a minor role, if any, in determining the specificity of cyclin-dependent CAKs for their CDK substrates and that protein-protein interactions involving sequences outside the T loop can influence substrate specificity both positively and negatively.  相似文献   

4.
Cyclin-dependent kinases (CDKs) that control cell cycle progression are regulated in many ways, including activating phosphorylation of a conserved threonine residue. This essential phosphorylation is carried out by the CDK-activating kinase (CAK). Here we examine the effects of replacing this threonine residue in human CDK2 by serine. We found that cyclin A bound equally well to wild-type CDK2 (CDK2(Thr-160)) or to the mutant CDK2 (CDK2(Ser-160)). In the absence of activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were more active than wild-type CDK2(Thr-160)-cyclin A complexes. In contrast, following activating phosphorylation, CDK2(Ser-160)-cyclin A complexes were less active than phosphorylated CDK2(Thr-160)-cyclin A complexes, reflecting a much smaller effect of activating phosphorylation on CDK2(Ser-160). The kinetic parameters for phosphorylating histone H1 were similar for mutant and wild-type CDK2, ruling out a general defect in catalytic activity. Interestingly, the CDK2(Ser-160) mutant was selectively defective in phosphorylating a peptide derived from the C-terminal domain of RNA polymerase II. CDK2(Ser-160) was efficiently phosphorylated by CAKs, both human p40(MO15)(CDK7)-cyclin H and budding yeast Cak1p. In fact, the k(cat) values for phosphorylation of CDK2(Ser-160) were significantly higher than for phosphorylation of CDK2(Thr-160), indicating that CDK2(Ser-160) is actually phosphorylated more efficiently than wild-type CDK2. In contrast, dephosphorylation proceeded more slowly with CDK2(Ser-160) than with wild-type CDK2, either in HeLa cell extract or by purified PP2Cbeta. Combined with the more efficient phosphorylation of CDK2(Ser-160) by CAK, we suggest that one reason for the conservation of threonine as the site of activating phosphorylation may be to favor unphosphorylated CDKs following the degradation of cyclins.  相似文献   

5.
p12(DOC-1) is a novel cyclin-dependent kinase 2-associated protein   总被引:12,自引:0,他引:12       下载免费PDF全文
Regulated cyclin-dependent kinase (CDK) levels and activities are critical for the proper progression of the cell division cycle. p12(DOC-1) is a growth suppressor isolated from normal keratinocytes. We report that p12(DOC-1) associates with CDK2. More specifically, p12(DOC-1) associates with the monomeric nonphosphorylated form of CDK2 (p33CDK2). Ectopic expression of p12(DOC-1) resulted in decreased cellular CDK2 and reduced CDK2-associated kinase activities and was accompanied by a shift in the cell cycle positions of p12(DOC-1) transfectants ( upward arrow G(1) and downward arrow S). The p12(DOC-1)-mediated decrease of CDK2 was prevented if the p12(DOC-1) transfectants were grown in the presence of the proteosome inhibitor clasto-lactacystin beta-lactone, suggesting that p12(DOC-1) may target CDK2 for proteolysis. A CDK2 binding mutant was created and was found to revert p12(DOC-1)-mediated, CDK2-associated cell cycle phenotypes. These data support p12(DOC-1) as a specific CDK2-associated protein that negatively regulates CDK2 activities by sequestering the monomeric pool of CDK2 and/or targets CDK2 for proteolysis, reducing the active pool of CDK2.  相似文献   

6.
目的探讨胃癌中CDK1和CDK2的表达情况及预后意义。方法应用免疫组化S-P法对48例各期胃癌和癌旁正常组织中CDK1和CDK2的表达情况进行检测。结果早期胃癌中CDK1和CDK2中表达较低(P0.05),进展期胃癌中表达更高(P0.05)。结论CDK1和CDK2可望成为胃癌早期预后指标和分子治疗的靶标。  相似文献   

7.
We have prepared phosphorylated cyclin-dependent protein kinase 2 (CDK2) for crystallization using the CDK-activating kinase 1 (CAK1) from Saccharomyces cerevisiae and have grown crystals using microseeding techniques. Phosphorylation of monomeric human CDK2 by CAK1 is more efficient than phosphorylation of the binary CDK2-cyclin A complex. Phosphorylated CDK2 exhibits histone H1 kinase activity corresponding to approximately 0.3% of that observed with the fully activated phosphorylated CDK2-cyclin A complex. Fluorescence measurements have shown that Thr160 phosphorylation increases the affinity of CDK2 for both histone substrate and ATP and decreases its affinity for ADP. By contrast, phosphorylation of CDK2 has a negligible effect on the affinity for cyclin A. The crystal structures of the ATP-bound forms of phosphorylated CDK2 and unphosphorylated CDK2 have been solved at 2.1-A resolution. The structures are similar, with the major difference occurring in the activation segment, which is disordered in phosphorylated CDK2. The greater mobility of the activation segment in phosphorylated CDK2 and the absence of spontaneous crystallization suggest that phosphorylated CDK2 may adopt several different mobile states. The majority of these states are likely to correspond to inactive conformations, but a small fraction of phosphorylated CDK2 may be in an active conformation and hence explain the basal activity observed.  相似文献   

8.
Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells.  相似文献   

9.
A detailed analysis is presented of the dynamics of human CDK5 in complexes with the protein activator p25 and the purine-like inhibitor roscovitine. These and other findings related to the activation of CDK5 are critically reviewed from a molecular perspective. In addition, the results obtained on the behavior of CDK5 are compared with data on CDK2 to assess the differences and similarities between the two kinases in terms of (i) roscovitine binding, (ii) regulatory subunit association, (iii) conformational changes in the T-loop following CDK/regulatory subunit complex formation, and (iv) specificity in CDK/regulatory subunit recognition. An energy decomposition analysis, used for these purposes, revealed why the binding of p25 alone is sufficient to stabilize the extended active T-loop conformation of CDK5, whereas the equivalent conformational change in CDK2 requires both the binding of cyclin A and phosphorylation of the Thr(160) residue. The interaction energy of the CDK5 T-loop with p25 is about 26 kcal.mol(-1) greater than that of the CDK2 T-loop with cyclin A. The binding pattern between CDK5 and p25 was compared with that of CDK2/cyclin A to find specific regions involved in CDK/regulatory subunit recognition. The analyses performed revealed that the alphaNT-helix of cyclin A interacts with the alpha6-alpha7 loop and the alpha7 helix of CDK2, but these regions do not interact in the CDK5/p25 complex. Further differences between the CDK5/p25 and CDK2/cyclin A systems studied are discussed with respect to their specific functionality.  相似文献   

10.
11.
N-Aryl aminothiazoles 6-9 were prepared from 2-bromothiazole 5 and found to be CDK inhibitors. In cells they act as potent cytotoxic agents. Selectivity for CDK1, CDK2, and CDK4 was dependent of the nature of the N-aryl group and distinct from the CDK2 selective N-acyl analogues. The N-2-pyridyl analogues 7 and 19 showed pan CDK inhibitory activity. Elaborated analogues 19 and 23 exhibited anticancer activity in mice against P388 murine leukemia. The solid-state structure of 7 bound to CDK2 shows a similar binding mode to the N-acyl analogues.  相似文献   

12.
目的研究共转染CDK1、CDK2siRNA同时抑制CDKI、CDK2蛋白表达对肿瘤细胞周期和细胞凋亡的影响,探讨细胞周期主要调控分子在肿瘤细胞凋亡中的作用。方法以人宫颈癌细胞株HeLa细胞为研究对象,用脂质体lipofectamine2000同时转染CDKl和CDK2siRNA。在转染后48、60h收集细胞,用Western印迹检测CDKl、CDK2蛋白的表达,AnnexinV/PI检测转染细胞的凋亡,流式细胞术DNA含量检测分析细胞周期。转染细胞进行瑞氏一姬姆萨染色(Wright—Giemsa)后在显微镜下观察其形态变化i结果共转染CDKl、CDK2siRNA后48和60h,Western印迹结果显示CDKl和CDK2蛋白的表达都同时降低。共转染CDKl、CDK2siRNA后,细胞周期S期和G1/M期比例与对照相比有明显增加;共转染细胞经瑞氏一姬姆萨染色后在显微镜下可见双核或多核细胞增多;AnnexinV/PI检测结果显示共转染CDK1、CDK2siRNA的细胞在48和60h细胞凋亡率与对照相比有显著的升高。结论siRNA干扰导致的CDKI、CDK2表达同时降低不仅导致细胞周期s期和G1/M期的阻滞,也诱导了肿瘤细胞的凋亡。  相似文献   

13.
Cyclin dependent kinases 1 and 2 (CDK1 and CDK2) play crucial roles in regulating cell cycle progression from G1 to S, through S, and G2 to M phase. Both inhibition and aberrant activation of CDK1/2 can be detrimental to cancer cell growth. However, the tools routinely employed to discriminate between the activities of these 2 kinases do not have the selectivity commonly attributed to them. Activation of these kinases is often assayed as a decrease of the inhibitory tyrosine-15 phosphorylation, yet the antibodies used cannot discriminate between phosphorylated CDK1 and CDK2. Inhibitors of these kinases, while partially selective against purified kinases, may lack selectivity when applied to intact cells. High levels of cyclin E are often considered a marker of increased CDK2 activity, yet active CDK2 targets cyclin E for degradation, hence high levels usually reflect inactive CDK2. Finally, inhibition of CDK2 does not arrest cells in S phase suggesting CDK2 is not required for S phase progression. Furthermore, activation of CDK2 in S phase can rapidly induce DNA double-strand breaks in some cell lines. The misunderstandings associated with the use of these tools has led to misinterpretation of results. In this review, we highlight these challenges in the field.  相似文献   

14.
15.
We have reinvestigated the long form of cyclin-dependent kinase (CDK)2 that is expressed in many rodent cells. We show that the mRNA encoding CDK2L arises by alternative splicing and that the encoded protein can bind to, and be activated by, cyclins A and E. The complex of CDK2L with cyclin A has about half the specific activity of the equivalent CDK2-cyclin A complex. Also, CDK2L--cyclin A is inhibited to the same extent and by the same concentrations of p21(CIP1) as CDK2--cyclin A. The nucleotide sequences of intron V in the human and murine CDK2 genes, where the sequences encoding the 48-residue insert in CDK2L are located, show very high conservation in the position of the alternatively spliced exon and its surroundings. Despite this, we were not able to detect significant expression of CDK2L in human cell lines, although a low level is expressed in COS-1 cells from monkeys.  相似文献   

16.
Cyclin-dependent kinases (CDKs) are promising drug targets for various human diseases, especially for cancers. Scaffold hopping strategy was applied on CAN508, a known selective CDK9 inhibitor, and a series of pyrazolo[3,4-b]pyridine compounds were synthesized and evaluated in vitro as CDK2 and CDK9 inhibitors. Most compounds exhibited moderate to potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems. Among them, compound 2e showed IC50 values of 0.36?μM for CDK2 and 1.8?μM for CDK9, respectively. Notably, the scaffold alteration seems to cause a shift in the selectivity profile of the inhibitors. In contrast to CAN508, compound 2k demonstrated remarkable selectivity toward CDK2 (265-fold over CDK9). Docking studies on compound 2k provided hints for further design of more potent and selective CDK2/CDK9 inhibitors.  相似文献   

17.
18.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

19.
Cyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein. Our data highlight the crucial importance of the N-terminal α helix, in conjunction with the α3 helix within the cyclin box, in activating CDK. Several Cyclin A2 mutants selectively bind to either CDK1 or CDK2. We demonstrate that association of Cyclin A2 to proteins such as CDK2 that was previously suggested as crucial is not a prerequisite for its nuclear localization, and we propose that the whole protein structure is involved.  相似文献   

20.
Cyclin-dependent kinase 2 (CDK2) regulates diverse aspects of the mammalian cell cycle. Most cancer cells contain mutations in the pathways that control CDK2, and CDK2 activity has received much attention as a target for cancer therapy. However, a recent report demonstrating that some cancer cells can proliferate without CDK2 activity questions the essential role of CDK2 in cell-cycle control, as well as its suitability as a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号