首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
2.
We have identified the sites phosphorylated in vitro by epidermal growth factor (EGF) receptor kinase in bovine brain phospholipase C-gamma (PLC-gamma). They are tyrosine residues 472, 771, 783, and 1254. The rate of phosphorylation was fastest with the sites at 771 and 783, then at 1254, and slowest at 472. PLC-gamma isolated from cells treated with EGF is known to contain at least four tyrosine phosphate-containing peptides and two of them are identified to be residues 771 and 1254 in the accompanying paper (Wahl, M. I., Nishibe, S., Kim, J. W., Kim, H., Rhee, S. G., and Carpenter, G. (1990) J. Biol. Chem. 265, 3944-3948). The 3 residues 472, 771, and 783 are located closely to the regions of PLC-gamma which exhibit a high sequence similarity to the regulatory domain of the src family tyrosine kinases. Nevertheless, the tyrosine phosphorylation did not affect the catalytic activity of PLC-gamma in vitro. We propose, therefore, that the phosphorylation of PLC-gamma by EGF receptor kinase alters its interaction with putative inhibitory proteins and leads to its activation.  相似文献   

3.
Binding of EGF to cells expressing human EGF receptor stimulated rapid tyrosine phosphorylation of phospholipase C-II (PLC-II), as revealed by immunoblotting analysis with phosphotyrosine-specific antibodies. Tyrosine phosphorylation of PLC-II was stimulated by low physiological concentrations of EGF (1 nM), was quantitative, and was already maximal after a 30 sec incubation with 50 nM EGF at 37 degrees C. Interestingly, antibodies specific for PLC-II were able to coimmunoprecipitate the EGF receptor and antibodies against EGF receptor also coimmunoprecipitated PLC-II. According to this analysis, approximately 1% of EGF receptor molecules were associated with PLC-II molecules. The protein tyrosine kinase inhibitor tyrphostin RG50864, which blocks EGF-dependent cell proliferation, blocked EGF-induced tyrosine phosphorylation of PLC-II, its association with EGF receptor, and EGF-induced Ca2+ release. Hence, EGF-induced tyrosine phosphorylation of PLC-II may be a regulatory event linking the tyrosine kinase activity of EGF receptor to the PIP2 hydrolysis signaling pathway.  相似文献   

4.
We have previously reported that fodrin (beta subunit), tubulin (alpha subunit) and microtubule-associated proteins (MAPs; MAP2 and tau) are good substrates for the purified insulin receptor kinase (Kadowaki, T., Nishida, E., Kasuga, M., Akiyama, T., Takaku, F., Ishikawa, M., Sakai, H., Kathuria, S., and Fujita-Yamaguchi, Y. (1985) Biochem. Biophys. Res. Commun. 127, 493-500 and Kadowaki, T., Fujita-Yamaguchi, Y., Nishida, E., Takaku, F., Akiyama, T., Kathuria, S., Akanuma, Y., and Kasuga, M. (1985) J. Biol. Chem. 260, 4016-4020). In this study, to investigate the substrate specificities of tyrosine kinases, we have examined the actions of the purified epidermal growth factor (EGF) receptor kinase and Rous sarcoma virus src kinase on purified microfilament- and microtubule-related proteins. Among microfilament-related proteins examined, the purified EGF receptor kinase phosphorylated the beta subunit, but not the alpha subunit, of fodrin on tyrosine residues with a Km below the micromolar range. The fodrin phosphorylation by the EGF receptor kinase was markedly inhibited by F-actin. In contrast, the purified src kinase preferentially phosphorylated the alpha subunit of fodrin on tyrosine residues. Fodrin phosphorylation by the src kinase was not inhibited by F-actin. Among microtubule proteins examined, MAP2 was the best substrate for the EGF receptor kinase. By contrast, src kinase favored phosphorylation of tubulin as compared to MAP2. The peptide mapping of MAP2 phosphorylated by the EGF receptor kinase and by the insulin receptor kinase produced very similar patterns of phosphopeptides, while that of MAP2 phosphorylated by the src kinase gave a distinctly different pattern. When the phosphorylation of the tubulin subunits was examined, the EGF receptor kinase preferred beta subunit to alpha subunit, but the src kinase phosphorylated both alpha and beta subunits to a similar extent. These results, together with our previous results, indicate that the substrate specificities of the EGF receptor kinase and the insulin receptor kinase are very similar, but not identical, while that of the src kinase is distinctly different from that of these growth factor receptor kinases.  相似文献   

5.
The abilities of different GTP-binding proteins to serve as phosphosubstrates for the epidermal growth factor (EGF) receptor/tyrosine kinase have been examined in reconstituted phospholipid vesicle systems. During the course of these studies we discovered that a low molecular mass, high affinity GTP-binding protein from bovine brain (designated as the 22-kDa protein) served as an excellent phosphosubstrate for the tyrosine-agarose-purified human placental EGF receptor. The EGF-stimulated phosphorylation of the purified 22-kDa protein occurs on tyrosine residues, with stoichiometries approaching 2 mol of 32Pi incorporated/mol of [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-binding sites. The EGF-stimulated phosphorylation of the brain 22-kDa protein requires its reconstitution into phospholipid vesicles. No phosphorylation of this GTP-binding protein is detected if it is simply mixed with the purified EGF receptor in detergent solution or if detergent is added back to lipid vesicles containing the EGF receptor and the 22-kDa protein. The EGF-stimulated phosphorylation of this GTP-binding protein is also markedly attenuated by guanine nucleotides, i.e. GTP, GTP gamma S, or GDP, suggesting that maximal phosphorylation occurs when the GTP-binding protein is in a guanine nucleotide-depleted state. Purified preparations of the 22-kDa phosphosubstrate do not cross-react with antibodies against the ras proteins. However, they do cross-react against two different peptide antibodies generated against specific sequences of the human platelet (and placental) GTP-binding protein originally designated Gp (Evans, T., Brown, M. L., Fraser, E. D., and Northrup, J. K. (1986) J. Biol. Chem. 261, 7052-7059) and more recently named G25K (Polakis, P. G., Synderman, R., and Evans, T. (1989) Biochem. Biophys. Res. Commun. 160, 25-32). When highly purified preparations of the human platelet Gp (G25K) protein are reconstituted with the purified EGF receptor into phospholipid vesicles, an EGF-stimulated phosphorylation of the platelet GTP-binding protein occurs with a stoichiometry approaching 2 mol of 32Pi incorporated/mol of [35S]GTP gamma S-binding sites. As is the case for the brain 22-kDa protein, the EGF-stimulated phosphorylation of the platelet GTP-binding protein is attenuated by guanine nucleotides. Overall, these results suggest that the brain 22-kDa phosphosubstrate for the EGF receptor is very similar, if not identical, to the Gp (G25K) protein. Although guanine nucleotide binding to the brain 22-kDa protein or to the platelet. GTP-binding protein inhibits phosphorylation, the phosphorylated GTP-binding proteins appear to bind [35S]GTP gamma S slightly better than their nonphosphorylated counterparts.  相似文献   

6.
In the course of our investigation of phospholipase C (PLC)-gamma 1 phosphorylation by using a set of anti-PLC-gamma 1 monoclonal antibodies (P.-G. Suh, S. H. Ryu, W. C. Choi, K.-Y. Lee, and S. G. Rhee, J. Biol. Chem. 263:14497-14504, 1988), we found that some of these antibodies directly recognize a 47-kDa protein. We show here that this 47-kDa protein is identical to the SH2/SH3-containing protein Nck (J. M. Lehmann, G. Riethmuller, and J. P. Johnson, Nucleic Acids Res. 18:1048, 1990). Nck was found to be constitutively phosphorylated on serine in resting NIH 3T3 cells. Platelet-derived growth factor (PDGF) treatment led to increased Nck phosphorylation on both tyrosine and serine. Nck was also found to be phosphorylated on tyrosine in epidermal growth factor (EGF)-treated A431 cells and in v-Src-transformed NIH 3T3 cells. Multiple sites of serine phosphorylation were detected in Nck from resting cells, and no novel sites were found upon PDGF or EGF treatment. A single major tyrosine phosphorylation site was found in Nck in both PDGF- and EGF-treated cells and in v-Src-transformed cells. This same tyrosine was phosphorylated in vitro by purified PDGF and EGF receptors and also by pp60c-src. We compared the phosphorylation of Nck and PLC-gamma 1 in several cell lines transformed by oncogenes with different modes of transformation. Although PLC-gamma 1 and Nck have significant amino acid identity, particularly in their SH3 regions, and both associate with growth factor receptors in a ligand-dependent manner, they were not always phosphorylated on tyrosine in a coincident manner.  相似文献   

7.
The epidermal growth factor (EGF) receptor-associated protein tyrosine kinase activity has been suggested to play important roles in the EGF-enhanced, clathrin-coated pit-mediated receptor internalization (W. S. Chen, C. S. Lazar, M. Peonie, R. Y. Tsien, G. N. Gill, and M. G. Rosenfeld, 1987, Nature 328, 820-823) but the kinase substrate important for this process has not been identified. This study demonstrates that the EGF receptor, partially purified from A431 epidermoid carcinoma cells, catalyzes the phosphorylation of one of the two clathrin light chains, clathrin light chain a (LCa). The phosphorylation activity is stimulated by EGF and immunoprecipitated by an EGF receptor monoclonal antibody. The phosphorylation occurs exclusively on tyrosine residues. Amino acid composition of the major tryptic phosphopeptide of the EGF receptor-phosphorylated LCa corresponds closely to that of residues 1 to 97 of LCa. A stoichiometry of 0.2 mol phosphate/mol LCa was attained after 60 min at 30 degrees C and a Km value of 1.7 microM was determined for the reaction. LCa of either neuronal or non-neuronal origin could serve as a substrate. In addition to the EGF receptor tyrosine kinase, a particulate src-related protein tyrosine kinase purified from bovine spleen (C. M. E. Litwin, H.-C. Cheng, and J. H. Wang, 1991, J. Biol. Chem. 226, 2557-2566) was shown in this study to also phosphorylate the light chains. However, in contrast to the EGF receptor phosphorylation, both clathrin light chains a and b were phosphorylated by the spleen kinase, suggesting that the two tyrosine kinases have differential site specificities. Given the specificity of LCa phosphorylation by the EGF receptor, we propose that LCa phosphorylation on a tyrosine residue(s) may be important in EGF-induced receptor internalization.  相似文献   

8.
Src homology region 2(SH2) has been demonstrated to recognize phosphotyrosine site. To clarify the precise mechanism of the recognition, we developed in vitro binding assay system using EGF receptor and SH2/SH3 region of phospholipase C(PLC) gamma 1. Phosphorylated EGF receptor bound to immobilized SH2/SH3 of PLC gamma 1 in Sepharose beads, while nonphosphorylated EGF receptor did not bind. In SH2 domain of PLC gamma 1, there are several highly conserved amino acid sequences that are common in a variety of SH2-containing proteins. Especially the eight amino acid sequence, G(S/T)FLVR(E/D)S is highly conserved in these proteins. We synthesized several peptides related to these sequences and examined the effect of peptides on the binding of EGF receptor to SH2 of PLC gamma 1. P1, GSFLVRES was the most effective inhibitor to suppress the binding. P2, GSFLVAES in which one amino acid, arginine of P1 is substituted by alanine is still effective. But a peptide, P3, SFLVRE in which two amino acids are deleted from P1 did not inhibit markedly. Moreover, P1 peptide immobilized in Sepharose beads also bound phosphorylated EGF receptor. These data suggest that highly conserved amino acid sequence GSFLVRES is the minimum essential unit to recognize tyrosine phosphorylated site.  相似文献   

9.
10.
Epidermal growth factor (EGF)-stimulated tyrosine phosphorylation of proteins was examined in cells expressing wild-type (WT-EGFR) EGF receptors or EGF receptors truncated at residue 973 (973-EGFR). A much broader spectrum of tyrosine phosphorylated proteins was found following EGF treatment of 973-EGFR expressing cells compared with cells expressing wild-type receptors. Several additional ras GTPase activating protein-associated tyrosine phosphorylated proteins were found in EGF-treated 973-EGFR cells relative to WT-EGFR cells. Additional tyrosine-phosphorylated proteins were also found to co-immunoprecipitate with phospholipase C gamma 1 (PLC gamma 1) following EGF treatment of cells expressing 973-EGFR relative to cells expressing WT-EGFR. EGF-stimulated tyrosine phosphorylation of PLC gamma 1 was found in cells expressing WT-EGFR, but not in cells expressing 973-EGFR. WT-EGF receptor from EGF-treated cells bound well to bacterially expressed src homology (SH) regions of PLC gamma 1 and to a lesser extent to bacterially expressed GTPase activating protein SH regions. No binding of 973-EGF receptor to SH regions of either protein could be detected. EGF treatment greatly reduced the half-life of WT-EGFR, but had relatively little effect on the half-life of 973-EGFR. EGF induced internalization of 973-EGFR at a slower rate than WT-EGFR and caused the appearance of discrete receptor degradation products for both cell types. The data indicate that truncation of the EGF receptor at residue 973 alters receptor substrate specificity, decreases the rate of receptor internalization, and has an inhibitory effect on receptor degradation.  相似文献   

11.
The band 3 glycoprotein from human erythrocytes was found to be phosphorylated on tyrosine residues by the purified EGF receptor kinase and the purified src kinase in vitro. Kinetic analysis revealed that Km of the band 3 protein phosphorylation by the EGF receptor kinase was 0.17 microM and 0.65 microM in the absence and presence of EGF (3 X 10(-7)M), respectively, and that in the case of the src kinase it was 0.4 microM. From these data the band 3 protein can be regarded as one of the best substrates common for the EGF receptor kinase and the src kinase in vitro.  相似文献   

12.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

13.
J Meisenhelder  P G Suh  S G Rhee  T Hunter 《Cell》1989,57(7):1109-1122
Phospholipase C-gamma (PLC-gamma) was rapidly phosphorylated on tyrosines and serines following PDGF and EGF treatment of quiescent 3T3 mouse fibroblasts and A431 human epidermoid cells, respectively, PDGF treatment increased PLC-gamma phosphorylation within 30 sec. This lasted for up to 1 hr, and occurred at high stoichiometry. Continuous receptor occupancy was required to maintain this phosphorylation. Three major sites of tyrosine phosphorylation were detected in PLC-gamma, two of which were phosphorylated in EGF-treated A431 cells. Under certain conditions PDGF receptor coimmunoprecipitated with PLC-gamma, suggesting that PDGF receptor can phosphorylate PLC-gamma directly. Indeed, purified PDGF or EGF receptor phosphorylated purified PLC-gamma on tyrosines identical to those phosphorylated in vivo. Tyrosine phosphorylation of PLC-gamma was not induced by bombesin, TPA, or insulin. Stimulation of PLC-gamma tyrosine phosphorylation and the reported ability of PDGF and EGF to induce phosphatidylinositol turnover in different cells were strongly correlated. We propose that tyrosine phosphorylation of PLC-gamma by PDGF and EGF receptors leads to its activation, and a consequent increase in phosphatidylinositol turnover.  相似文献   

14.
GTPase-activating protein (GAP) stimulates the ability of p21ras to hydrolyze GTP to GDP. Since GAP is phosphorylated by a variety of activated or oncogenic protein-tyrosine kinases, it may couple tyrosine kinases to the Ras signaling pathway. The epidermal growth factor (EGF) receptor cytoplasmic domain phosphorylated human GAP in vitro within a single tryptic phosphopeptide. The same GAP peptide was also apparently phosphorylated on tyrosine in EGF-stimulated rat fibroblasts. Circumstantial evidence suggested that residue 460 might be the site of GAP tyrosine phosphorylation. This possibility was confirmed by phosphorylation of a synthetic peptide corresponding to the predicted tryptic peptide containing Tyr-460. Alteration of Tyr-460 to phenylalanine by site-directed mutagenesis diminished the in vitro phosphorylation of a bacterial GAP polypeptide by the EGF receptor. We conclude that Tyr-460 is a site of GAP tyrosine phosphorylation by the EGF receptor in vitro and likely in vivo. GAP Tyr-460 is located immediately C terminal to the second GAP SH2 domain, suggesting that its phosphorylation might have a role in regulating protein-protein interactions.  相似文献   

15.
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.  相似文献   

16.
The binding of epidermal growth factor (EGF) to its receptor induces tyrosine phosphorylation of phospholipase C gamma (PLC gamma), which appears to be necessary for its activation leading to phosphatidyl inositol (PI) hydrolysis. Moreover, EGF-receptor (EGF-R) activation and autophosphorylation results in binding of PLC gamma to the tyrosine phosphorylated carboxy-terminus of the receptor. To gain further insights into the mechanisms and interactions regulating these processes, we have analyzed transfected NIH-3T3 cells expressing two EGF-R carboxy-terminal deletion mutants (CD63 and CD126) with reduced capacity to stimulate PI hydrolysis, Ca2+ rises, and DNA synthesis. In fact, the CD126 mutant lacking 126 carboxy-terminal amino acids, including four tyrosine autophosphorylation sites, was unable to stimulate PI hydrolysis or Ca2+ rise in response to EGF. Surprisingly, EGF binding to the cell lines expressing CD63 or CD126 mutants was followed by similar stimulation of tyrosine phosphorylation of PLC gamma. Our results suggest that although necessary, tyrosine phosphorylation of PLC gamma may not be sufficient for stimulation and PI hydrolysis. It is clear, however, that the carboxy-terminal region of EGF-R is involved in regulation of interactions with cellular targets and therefore plays a crucial role in postreceptor signaling pathways.  相似文献   

17.
G protein-coupled receptor (GPCR) kinases (GRKs) are key regulators of GPCR function. Here we demonstrate that activation of epidermal growth factor receptor (EGFR), a member of receptor tyrosine kinase family, stimulates GRK2 activity and transregulates the function of G protein-coupled opioid receptors. Our data showed that EGF treatment promoted DOR internalization induced by DOR agonist and this required the intactness of GRK2-phosphorylation sites in DOR. EGF stimulation induced the association of GRK2 with the activated EGFR and the translocation of GRK2 to the plasma membrane. After EGF treatment, GRK2 was phosphorylated at tyrosyl residues. Mutational analysis indicated that EGFR-mediated phosphorylation occurred at GRK2 N-terminal tyrosyl residues previously shown as c-Src phosphorylation sites. However, c-Src activity was not required for EGFR-mediated phosphorylation of GRK2. In vitro assays indicated that GRK2 was a direct interactor and a substrate of EGFR. EGF treatment remarkably elevated DOR phosphorylation in cells expressing the wild-type GRK2 in an EGFR tyrosine kinase activity-dependent manner, whereas EGF-stimulated DOR phosphorylation was greatly decreased in cells expressing mutant GRK2 lacking EGFR tyrosine kinase sites. We further showed that EGF also stimulated internalization of mu-opioid receptor, and this effect was inhibited by GRK2 siRNA. These data indicate that EGF transregulates opioid receptors through EGFR-mediated tyrosyl phosphorylation and activation of GRK2 and propose GRK2 as a mediator of cross-talk from RTK to GPCR signaling pathway.  相似文献   

18.
Several cytoplasmic tyrosine kinases contain a conserved, non-catalytic stretch of approximately 100 amino acids called the src homology 2 (SH2) domain, and a region of approximately 50 amino acids called the SH3 domain. SH2/SH3 domains are also found in several other proteins, including phospholipase C-gamma (PLC gamma). Recent studies indicate that SH2 domains promote association between autophosphorylated growth factor receptors such as the epidermal growth factor (EGF) receptor and signal transducing molecules such as PLC gamma. Because SH2 domains bind specifically to protein sequences containing phosphotyrosine, we examined their capacity to prevent tyrosine dephosphorylation of the EGF and other receptors with tyrosine kinase activity. For this purpose, various SH2/SH3 constructs of PLC gamma were expressed in Escherichia coli as glutathione-S-transferase fusion proteins. Our results show that purified SH2 domains of PLC gamma are able to prevent tyrosine dephosphorylation of the EGF receptor and other receptors with tyrosine activity. The inhibition of tyrosine dephosphorylation paralleled the capacity of various SH2-containing constructs to bind to the EGF receptor, suggesting that the tyrosine phosphatase and the SH2 domain compete for the same tyrosine phosphorylation sites in the carboxy-terminal tail of the EGF receptor. Analysis of the phosphorylation sites protected from dephosphorylation by PLC gamma-SH2 revealed substantial inhibition of dephosphorylation of Tyr992 at 1 microM SH2. This indicates that Tyr992 and its flanking sequence is the high-affinity binding site for SH2 domains of PLC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Phosphorylation of Hrs downstream of the epidermal growth factor receptor.   总被引:2,自引:0,他引:2  
The hepatocyte growth factor-regulated tyrosine kinase substrate Hrs is an early endosomal protein that is thought to play a regulatory role in the trafficking of growth factor/receptor complexes through early endosomes. Stimulation of cells with epidermal growth factor (EGF) rapidly leads to phosphorylation of Hrs, raising the question whether the receptor tyrosine kinase phosphorylates Hrs directly. Here, we present evidence that a downstream kinase, rather than the active receptor kinase is responsible. We show that the nonreceptor tyrosine kinase Src is able to phosphorylate Hrs in vitro and in vivo, but that Hrs is nevertheless phosphorylated in Src-, Yes- and Fyn-negative cells. Moreover, we show that only 10-20% of Hrs is phosphorylated following EGF stimulation, and that phosphorylation occurs at multiple tyrosines located in different parts of Hrs. These results suggest that Hrs is a substrate for several kinases downstream of the EGF receptor.  相似文献   

20.
We have previously demonstrated that concomitant activation of receptor tyrosine kinases and certain G protein-coupled receptors (GPCRs) can promote a synergistic increase in the rate of airway smooth muscle cell (ASM) proliferation. Here we clarify the role of p70S6 kinase (p70S6K) as an integrator of receptor tyrosine kinase and GPCR signaling that augments ASM DNA synthesis by demonstrating that specific p70S6K phosphorylation sites receive distinct regulatory input from GPCRs that promotes sustained kinase activity critical to mitogenesis. Prolonged stimulation of ASM cells with EGF and thrombin induced a greater than additive effect in levels of p70S6K phosphorylated at residue T389, whereas a significant but more modest increase in the level of T229 and T421/S424 phosphorylation was also observed. The augmenting effects of thrombin could be dissociated from p42/p44 MAPK activation, as selective inhibition of thrombin-stimulated p42/p44 failed to alter the profile of cooperative p70S6K T389 phosphorylation, p70S6K kinase activity, or ASM [(3)H]thymidine incorporation. Thrombin stimulated a sustained increase in the level of Akt phosphorylation and also augmented EGF-stimulated Akt phosphorylation. The cooperative effects of thrombin on Akt/p70S6K phosphorylation and [(3)H]thymidine incorporation were all attenuated by heterologous expression of Gbetagamma sequestrants. These data suggest that PI3K-dependent T389/T229 phosphorylation is limiting in late-phase p70S6K activation by EGF and contributes to the cooperative effect of GPCRs on p70S6K activity and cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号