首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intercellular junctions promote homotypic cell to cell adhesion and transfer intracellular signals which control cell growth and apoptosis. Junctional adhesion molecule-A (JAM-A) is a transmembrane immunoglobulin located at tight junctions of normal epithelial cells of mammary ducts and glands. In the present paper we show that JAM-A acts as a survival factor for mammary carcinoma cells. JAM-A null mice expressing Polyoma Middle T under MMTV promoter develop significantly smaller mammary tumors than JAM-A positive mice. Angiogenesis and inflammatory or immune infiltrate were not statistically modified in absence of JAM-A but tumor cell apoptosis was significantly increased. Tumor cells isolated from JAM-A null mice or 4T1 cells incubated with JAM-A blocking antibodies showed reduced growth and increased apoptosis which paralleled altered junctional architecture and adhesive function. In a breast cancer clinical data set, tissue microarray data show that JAM-A expression correlates with poor prognosis. Gene expression analysis of mouse tumor samples showed a correlation between genes enriched in human G3 tumors and genes over expressed in JAM-A +/+ mammary tumors. Conversely, genes enriched in G1 human tumors correlate with genes overexpressed in JAM-A-/- tumors. We conclude that down regulation of JAM-A reduces tumor aggressive behavior by increasing cell susceptibility to apoptosis. JAM-A may be considered a negative prognostic factor and a potential therapeutic target.  相似文献   

2.
Modeling human breast cancer metastasis in mice: maspin as a paradigm   总被引:14,自引:0,他引:14  
Breast cancer is the most common cancer detected in women, accounting for nearly one out of every three cancers diagnosed in the United States. Most cancer patients do not die from the primary tumor but die due to metastasis. Therefore, the study of metastasis is of most importance both to the clinician and patient. In the past, animal models have been used in breast cancer research and mammary gland biology. Our group has also established several animal models to address the function of a novel tumor suppressor gene maspin in breast tumor progression. Maspin was initially isolated from normal mammary epithelial cells. Its expression was down regulated in breast tumors. To test the protective role of maspin overexpression in mammary tumor progression, we crossed maspin overexpression transgenic mice (WAP-maspin) with a strain of oncogenic WAP-SV40 T antigen mice. The bitransgenic mice had reduced tumor growth rate and metastasis. Maspin overexpression increased the rate of apoptosis of both preneoplastic and carcinomatous mammary epithelial cells. Maspin reduced tumor growth through a combination of reduced angiogenesis and increased apoptosis. In a separate animal experiment, maspin overexpressing mammary tumor cells (TM40D) were implanted into the fat pad of syngeneic mice. TM40D tumor cells were very invasive and metastatic. However, both primary tumor growth and metastasis were significantly blocked in TM40D cells that overexpress maspin as a consequence of plasmid or retrovirus infection. These evidences demonstrate that maspin function to inhibit primary tumor growth as well as invasion and metastasis. Elucidating the molecular mechanism of maspin action will shed light on our understanding of breast cancer invasion and metastasis.  相似文献   

3.
Endocrine-active chemicals alter or mimic physiological hormones. These compounds are reported to originate from a wide variety of sources, and recent studies have shown widespread human exposure to several of these compounds. Given the role of the sex steroid hormone, estradiol, in human breast cancer causation, endocrine-active chemicals which interfere with estrogen signaling constitute one potential factor contributing to the high incidence of breast cancer. Thus, the aim of this review is to examine several common endocrine-active chemicals and their respective roles in breast cancer causation or prevention. The plastic component, bisphenol A (BPA), the synthetic estrogen, diethylstilbestrol (DES), the by-product of organic combustion, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the soy component, genistein, and the red grape phytoalexin, resveratrol, have some degree of structural similarities to each other and estradiol. However, despite these structural similarities, the in vitro and in vivo properties of each of these chemicals vary greatly in terms of breast cancer causation and prevention. Early life exposure to BPA and DES increases rodent susceptibility to chemically induced mammary carcinogenesis, presumably through retardation of normal mammary gland maturation and/or disrupting the ratio of cell proliferation and apoptosis in the mammary gland. On the other hand, early exposures to genistein and resveratrol protect rodents against chemically induced and spontaneous mammary cancers. This is reported to occur through the ability of genistein and resveratrol to accelerate mammary gland maturation. Interestingly, TCDD, which is the most structurally dissimilar to the above chemicals and functions as an anti-estrogen, also increases chemically induced mammary carcinogenesis through retardation of mammary gland maturation. This article is part of a Special Issue entitled 'Endocrine disruptors'.  相似文献   

4.
It has been suggested that chronic, low-level exposure to radiofrequency (RF) radiation may promote the formation of tumors. Previous studies, however, showed that low-level, long-term exposure of mammary tumor-prone mice to 435 MHz or 2450 MHz RF radiation did not affect the incidence of mammary tumors. In this study, we investigated the effects of exposure to a unique type of electromagnetic energy: pulses composed of an ultra-wideband (UWB) of frequencies, including those in the RF range. One hundred C3H/HeJ mice were exposed to UWB pulses (rise time 176 ps, fall time 3.5 ns, pulse width 1.9 ns, peak E-field 40 kV/m, repetition rate 1 kHz). Each animal was exposed for 2 min once a week for 12 weeks. One hundred mice were used as sham controls. There were no significant differences between groups with respect to incidence of palpated mammary tumors, latency to tumor onset, rate of tumor growth, or animal survival. Histopathological evaluations revealed no significant differences between the two groups in numbers of neoplasms in all tissues studied (lymphoreticular tissue, thymus, respiratory, digestive and urinary tracts, reproductive, mammary and endocrine systems, and skin). Our major finding was the lack of effects of UWB-pulse exposure on promotion of mammary tumors in a well-established animal model of mammary cancer.  相似文献   

5.
6.
In view of reports that human breast cancer cells secrete growth factors that can replace estradiol in sustaining tumor growth [1], we have investigated whether hormone independent (HI) GR mouse mammary tumors can sustain growth of estrogen-depleted hormone dependent (HD) tumors. HD GR mammary tumor TSl 106 was grafted subcutaneously in the right flank of estrone plus progesterone treated castrated (020 X GR)F1 mice. After 2 weeks the estrone treatment was stopped and the mice received 50, 100 or 150 mg HI GR mammary tumor TSl 104 in the left flank. However, the regression of the HD tumor due to estrone depletion was not prevented or retarded by the HI grafts. In other experiments we investigated integrations of mouse mammary tumor virus (MMTV) proviral DNA in the DNA of GR mammary tumors. We could demonstrate the presence of two cell populations in tumor TSl 96, both HD but differing in MMTV DNA integration events. Our data indicate that exogenous integrations of MMTV proviruses can take place in mouse mammary tumor DNA without loss of hormone dependency of the tumors. Like in GR/Mtv-2+ mice, mammary tumor transplants differing in MMTV proviral integrations are also observed in 020/Mtv-2+ mice.  相似文献   

7.
Athymic (nu/nu) mice are T cell deficient and can accept xenografts of human tumor material. Hormone-dependent tumor growth can be demonstrated in ovariectomized athymic mice by estrogen administration. Estrogen receptor (ER) positive MCF-7 breast cancer cells implanted into the axillary mammary fat do not grow into palpable tumors unless sustained release preparations of estrogen are administered. The non-steroidal antiestrogen tamoxifen, though it exhibits estrogenic properties in the mouse, does not facilitate MCF-7 tumor growth (during short term, i.e. 8 weeks of therapy) and can prevent estradiol-stimulated growth. In contrast, ER negative MDA-MB-231 cells grow with or without estrogen administration and tamoxifen does not control tumor growth. These statements reflect current dogma concerning the value of athymic mice to confirm the hormone dependent growth of cancer cells in vivo. Our aim has been to define the limits of this dogma and to investigate the growth relationship of hormone-dependent and independent cells with their host environment. The potential endocrine or paracine effect of ER negative tumors on the growth of ER positive tumors was evaluated by transplantation on opposite sides of athymic mice or by the inoculation of different ratios of ER positive/negative cells (MCF-7:MDA-MB-231 9:1, 99:1, 999:1). MCF-7 cells could not be encouraged to grow by a rapidly growing MDA-MB-231 tumor on the opposite side of the animal. Similarly ER negative tumors grew out of the mixed tumor inoculates suggesting that ER positive tumors could not be encouraged to grow preferentially by the paracrine influences of ER negative cells. However, estrogen facilitates the growth of an ER positive tumor following inoculation of mixed cell populations. Antiestrogen treatment can blunt estrogen-stimulated growth but cannot control the growth of ER positive/negative containing tumors. ER positive endometrial tumors grow in response to estrogen treatment and some (EnCa101) have been shown to grow in response to tamoxifen or a combination of tamoxifen and estrogen. More unusual though is our recent observation that an ER negative primary endometrial tumor (BR) and its metastasis (BR-MET) grow more rapidly in estrogen-treated athymic mice. This finding seems to have far-ranging consequences for our view of hormone-dependent growth. Either our view of estrogen-stimulated growth needs to be modified or the host is specifically altered during estrogen treatment. We have taken the position that since natural killer cells (present in athymic mice) can be lowered by estrogen this may result in an increased tumor cell survival in the heterotransplant model.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
NGAL/lipocalin-2 is a siderophore-binding protein that is highly expressed in several cancers. It is suggested to confer a proliferative advantage to cancer cells. Its expression has been correlated with aggressiveness of breast cancer as determined both in patients and in mouse breast cancer models. This was recently confirmed in two mouse models of spontaneous breast cancer in wild-type and lipocalin-2-deficient mice. We used a similar strategy using a different mouse strain. Lipocalin-2-deficient mice and mouse mammary tumor virus-polyoma middle T antigen (MMTV-PyMT) mice were crossed into the same FVB/N background. All mice developed tumors by week 8. The mice were sacrificed on week 13 and tissue was processed for biochemical and histological analysis. The total tumor volume and number of metastases were quantitated in 26 lipocalin-2-deficient mice and 34 wild-type controls. Lipocalin-2 expression in tumors of MMTV-PyMT-positive and wild-type mice was assessed by quantitative real-time PCR and by immunohistochemistry. The expression of the lipocalin-2 receptors 24p3R and megalin and of Mmp-9, transferrin receptor, and Bdh2 (a producer of a mammalian siderophore) were quantitated by real-time PCR. No significant difference was observed between wild-type and lipocalin-2-deficient mice. Lipocalin-2 was highly expressed in tumors from wild-type mice, but the expression did not correlate with tumor size. No effect of lipocalin-2 was observed with respect to time to tumor appearance, total tumor volume, or to the number of metastases. Histology and gelatinolytic activity of the mammary tumors did not differ between wild-type and lipocalin-2-deficient mice. We conclude that NGAL/lipocalin-2 does not invariably affect the aggressiveness of breast cancers as assessed in mouse models, thus questioning the role of lipocalin-2 in cancer development.  相似文献   

10.
Excess mental stress may harm health, and even accelerate cancer initiation and progression. One fourth of breast cancer patients suffer mental stress including anxiety, sadness, or depression, which negatively affect prognosis and survival. However, the regulatory mechanism is yet to be determined. Herein, we applied unpredictable stress stimuli to the breast tumor-bearing mice to establish a xenograft model of breast cancer suffering mental stress, followed by behavioral tests, tumor growth tracking, immune analysis, miRNA screening, and tumor cell proliferation analysis as well. As a result, increased stress hormone levels in serum, decreased percentage of T and NK cells in both blood and tumor samples and accelerated tumor growth in vivo were observed in the mice exposed to mental stress. Promoted cell proliferation was observed in both primary tumor cells derived from the stressed mice and 4T1 breast cancer cells treated with stress hormone corticosterone. In addition, a subset of miRNAs including miR-326, 346, 493, 595, 615, and 665 were identified through a miRNA screening with downregulation in tumors of the stressed mice. CCND1 was identified as a common target gene of miR-346 and miR-493, the top two most significantly downregulated miRNAs by stress exposure. The stress-miRNA-CCND1 signaling regulation of the tumor cell proliferation was further validated in 4T1 cells treated with corticosterone in vitro. GO terms and KEGG pathways analyses on the target genes of miR-346 and miR-493 revealed their involvement in the regulation of human cancer and neuron system, indicating the importance of non-coding genome in mediating the mental stress-induced cancer regulation. In conclusion, this study not only explored immune and nonimmune mechanisms through which mental stress exposure contributes to tumor growth in breast cancer, but also suggested a new therapeutic strategy for cancer patients suffering mental stress.Subject terms: Breast cancer, Disease model, miRNAs  相似文献   

11.
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.  相似文献   

12.
Oncogenes and human breast cancer.   总被引:6,自引:4,他引:2       下载免费PDF全文
The role of oncogenes in breast tumorigenesis is unclear. Alterations and/or amplification of several oncogene sequences have been observed in primary human breast tumors, in breast tumor cell lines, and in mammary tumors in model systems. In principle, such alterations could be sites of primary lesions for human breast cancer, causes of tumor progression or metastasis, or simply secondary lesions of highly aberrant tumor genomes. The present study tested genetic linkage of breast cancer susceptibility to nine oncogenes in 12 extended families including 87 affected individuals. Lod scores for close linkage of each candidate sequence to breast cancer were -19.6 for HRAS, -12.3 for KRAS2, -1.0 for NRAS, -6.0 for MYC, -6.1 for MYB, -8.2 for ERBA2, -7.9 for INT2, and -5.1 for RAF1. Regions of chromosome 11p associated with tumor homozygosity and the region of 3p carrying the gene for Von Hippel-Lindau disease could also be excluded from linkage to human breast cancer. The 5-kb allele of the MOS oncogene, previously proposed to be associated with breast cancer, was absent in these families, suggesting that polymorphism at this locus is not associated with inherited susceptibility. These results strongly suggest that oncogenes are not the sites of primary alterations leading to breast cancer. On the other hand, alterations in one or more of these sequences may be associated with tumor progression.  相似文献   

13.
Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil), or dieldrin (0.45, 2.25, and 4.5 µg/g body weight) daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.  相似文献   

14.
In the current study, we tested the central hypothesis that exposure to Delta-9-tetrahydrocannabinol (Delta9-THC), the major psychoactive component in marijuana, can lead to enhanced growth of tumors that express low to undetectable levels of cannabinoid receptors by specifically suppressing the antitumor immune response. We demonstrated that the human breast cancer cell lines MCF-7 and MDA-MB-231 and the mouse mammary carcinoma 4T1 express low to undetectable levels of cannabinoid receptors, CB1 and CB2, and that these cells are resistant to Delta9-THC-induced cytotoxicity. Furthermore, exposure of mice to Delta9-THC led to significantly elevated 4T1 tumor growth and metastasis due to inhibition of the specific antitumor immune response in vivo. The suppression of the antitumor immune response was mediated primarily through CB2 as opposed to CB1. Furthermore, exposure to Delta9-THC led to increased production of IL-4 and IL-10, suggesting that Delta9-THC exposure may specifically suppress the cell-mediated Th1 response by enhancing Th2-associated cytokines. This possibility was further supported by microarray data demonstrating the up-regulation of a number of Th2-related genes and the down-regulation of a number of Th1-related genes following exposure to Delta9-THC. Finally, injection of anti-IL-4 and anti-IL-10 mAbs led to a partial reversal of the Delta9-THC-induced suppression of the immune response to 4T1. Such findings suggest that marijuana exposure either recreationally or medicinally may increase the susceptibility to and/or incidence of breast cancer as well as other cancers that do not express cannabinoid receptors and are resistant to Delta9-THC-induced apoptosis.  相似文献   

15.
16.
Onapristone and other antiprogestins proved to possess a potent antitumor activity in several hormone-dependent experimental breast cancer models. This activity is as strong or even better than that of tamoxifen or ovariectomy in the MXT-mammary tumor of the mouse and the DMBA- and MNU-induced mammary tumor of the rat. The antitumor activity is evident in these models in spite of elevated serum levels of ovarian and pituitary hormones. The detailed analysis of all our data including the morphological (ultrastructure) studies of the mammary tumors of treated animals and the effects on growth and cell cycle kinetics using DNA flow cytometry indicates that the antitumor action of antiprogestins is mediated via the progesterone receptor and related to the induction of terminal cell differentiation leading to increased cell death. The strong antitumor activity of antiprogestins in our experimental breast cancer models does not primarily depend on a classical anti-hormonal mechanism. The antiprogestin-related reduction of the number of mammary tumor cells in the S-phase in our experimental tumor models (G0G1 arrest) emphasizes the unique innovative mechanism of action of these new agents in the treatment of human breast cancer.  相似文献   

17.
Protein-tyrosine phosphatase 1B (PTP1B), a well-established metabolic regulator, plays an important role in breast cancer. Using whole-body PTP1B knockout mice, recent studies have shown that PTP1B ablation delays HER2/Neu-induced mammary cancer. Whether PTP1B plays a cell-autonomous or a noncell-autonomous role in HER2/Neu-evoked tumorigenesis and whether it is involved in tumor maintenance was unknown. We generated mice expressing HER2/Neu and lacking PTP1B specifically in the mammary epithelium. We found that mammary-specific deletion of PTP1B delays the onset of HER2/Neu-evoked mammary tumors, establishing a cell autonomous role for PTP1B in such neoplasms. We also deleted PTP1B in established mouse mammary tumors or depleted PTP1B in human breast cancer cell lines grown as xenografts. PTP1B inhibition did not affect tumor growth in either model showing that neither epithelial nor stromal PTP1B is necessary for tumor maintenance. Taken together, our data show that despite the PTP1B contribution to tumor onset, it is not essential for tumor maintenance. This suggests that PTP1B inhibition could be effective in breast tumor prevention.  相似文献   

18.
Over the past few years, we have shown that the surge of melatonin in the circulation during darkness represents a potent oncostatic signal to tissue-isolated rat hepatoma 7288CTC, which is an ER+ adenocarcinoma of the liver. This oncostatic effect occurs via a melatonin receptor-mediated suppression of tumor cAMP production that leads to a suppression of the tumor uptake of linoleic acid (LA), an essential fatty acid with substantial oncogenic properties. The ability of LA to promote cancer progression is accomplished by its intracellular metabolism to 13-hydroxyoctadecadienoic acid (13-HODE) which amplifies the activity of the epidermal growth factor receptor/mitogen-activated protein kinase pathway leading to cell proliferation. By blocking tumor LA uptake, melatonin effectively blocks the production of 13-HODE and thus, markedly attenuates tumor growth. A similar effect of melatonin is observed in tissue-isolated, ER+ MCF-7 human breast cancer xenografts and nitrosomethylurea (NMU)-induced rat mammary cancers. When male rats bearing tissue-isolated hepatomas are exposed either to constant bright light (300 lux) or dim light (0.25 lux) during the dark phase of a 12L:12D photoperiod, the latency to onset was significantly reduced while the growth of tumors was markedly increased over a 4 wk period as compared with control tumors in 12L:12D-exposed rats. In constant light- and dim light during darkness-exposed rats, melatonin levels were completely suppressed while tumor growth, LA uptake and 13-HODE production were markedly increased. Similar results were obtained in constant bright light-exposed female rats bearing tissue-isolated NMU-induced mammary cancers or MCF-7 human breast cancer xenografts. To date, these studies provide the most definitive experimental evidence that light exposure during darkness increases the risk of cancer progression via elimination of the nocturnal melatonin signal and its suppression of tumor LA uptake and metabolism to 13-HODE.  相似文献   

19.
Breast cancer is currently one of the most common malignant tumors in women. Our previous research found that thymic dysfunction has a certain relationship with the occurrence and development of breast cancer. In order to explore whether the functional status of thymus is related to the development and metastasis of breast cancer, we use BALB/c wild type mice (BALB wt), BALB/c nude mice (BALB nu), BALB wt mice implanted with 4T1 cells (wt 4T1), BALB nu with 4T1 (nu 4T1), D-galactose treatment wt 4T1 mice (D-Gal), Thymalfasin treatment wt 4T1 mice (Tα1), Cyclophosphamide treatment wt 4T1 mice (CTX), Doxorubicin treatment wt 4T1 mice (Dox) in the research. As a result, nu 4T1, D-Gal and DOX had earlier lung metastases. Gene chip results showed that PTMα and Tβ15b1 were the most up-regulated and down-regulated genes in thymosin-related genes, respectively. Overexpression or silencing of PTMα and Tβ15b1 genes did not affect the proliferation of 4T1 cells. PTMα gene silenced, cell migration and invasion ability enhanced, while PTMα gene overexpression, the cell invasion ability weaken. In vivo, PTMα gene overexpression promotes tumor growth and lung metastasis in the early stage, but has no significant effect in the later stage. Tβ15b1 overexpression also promotes tumor growth in the early stage, but suppresses in the later stage. Tβ15b1 gene silencing inhibits tumor lung metastasis. Thus, our findings demonstrated that thymic function affects breast cancer development and metastasis by regulating expression of thymus secretions PTMα and Tβ15b1. Our study provided new directions for breast cancer therapy.  相似文献   

20.
Breast cancer incidence and mortality increase with age. A better understanding of the biological behavior of metastatic and nonmetastatic breast tumors in older subjects may help to develop improved breast cancer therapies. In this study, we used syngeneic metastatic (4TO7cg) and nonmetastatic (64pT) mouse breast tumor models at three age levels to evaluate various characteristics that are considered to be important for effective anti-breast cancer immunotherapy. These included tumor size and growth, metastases, vascularization, gene expression levels of the tumor-associated antigen (TAA) Mage-b (homologous to human MAGE-B) in primary breast tumors and metastases, and the presence of CD4(+) and CD8(+) T cells in the inguinal lymph nodes at the site of the tumor. The primary breast tumors and metastases were generated by injection of mouse mammary tumor cell lines 4TO7cg or 64pT into a mammary fat pad of normal 3-, 9-, or 21/24-month old BALB/c mice. In the nonmetastatic breast tumor model, significantly smaller tumors were observed in old compared with young mice. This was associated with a significant increase in the percentage of CD8(+) T cells in inguinal lymph nodes and significantly higher Mage-b expression levels in the primary tumors at old age. In the metastatic (4TO7cg) breast tumor model, a less pronounced, not statistically significant, smaller tumor size was found in the old mice, without a difference in the percentage of CD8(+) T cells or Mage-b expression levels. However, in this mouse model almost all metastases showed high levels of Mage-b expression (2- to 3-fold higher than the primary tumors in the same animals) regardless of age. These results indicate that the metastatic and nonmetastatic breast tumor models could be useful model systems to analyze how breast cancer vaccines for humans can be tailored to old age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号