首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of biologically active proteins is of great importance to research and industry. Cellulose is an attractive matrix and cellulose-binding domain (CBD) an excellent affinity tag protein for the purification and immobilization of many of these proteins. We constructed two vectors to enable the cloning and expression of proteins fused to the N- or C-terminus of CBD. Their usefulness was demonstrated by fusing the heparin-degrading protein heparinase I to CBD (CBD-HepI and HepI-CBD). The fusion proteins were over-expressed in Escherichia coli under the control of a T7 promoter and found to accumulate in inclusion bodies. The inclusion bodies were recovered by centrifugation, the proteins were refolded and recovered on a cellulose column. The bifunctional fusion protein retained its abilities to bind to cellulose and degrade heparin. C-terminal fusion of heparinase I to CBD was somewhat superior to N-terminal fusion: Although specific activities in solution were comparable, the latter exhibited impaired binding capacity to cellulose. CBD-HepI-cellulose bioreactor was operated continuously and degraded heparin for over 40 h without any significant loss of activity. By varying the flow rate, the mean molecular weight of the heparin oligosaccharide produced could be controlled. The molecular weight distribution profiles, obtained from heparin depolymerization by free heparinase I, free CBD-HepI, and cellulose-immobilized CBD-HepI, were compared. The profiles obtained by free heparinase I and CBD-HepI were indistinguishable, however, immobilized CBD-HepI produced much lower molecular weight fragments at the same percentage of depolymerization. Thus, CBD can be used for the efficient production of bioreactors, combining purification and immobilization into essentially a single step.  相似文献   

2.
Recombinant production and, in particular, immobilization of antibody fragments onto carrier materials are of high interest with regard to diagnostic and therapeutic applications. In this study, the recombinant production of scFv-displaying biopolymer beads intracellularly in Escherichia coli was investigated. An anti-beta-galactosidase scFv (single chain variable fragment of an antibody) was C-terminally tagged with the polymer-synthesizing enzyme PhaC from Cupriavidus necator by generating the respective hybrid gene. The functionality of the anti-beta-galactosidase scFv-PhaC fusion protein was assessed by producing the respective soluble fusion protein in an Escherichia coli AMEF mutant strain. AMEF (antibody-mediated enzyme formation) strains contain an inactive mutant beta-galactosidase, which can be activated by binding of an anti-beta-galactosidase antibody. In vivo activation of AMEF beta-galactosidase indicated that the scFv is functional with the C-terminal fusion partner PhaC. It was further demonstrated that polymer biosynthesis and bead formation were mediated by the scFv-PhaC fusion protein in the cytoplasm of recombinant E. coli when the polymer precursor was metabolically provided. This suggested that the C-terminal fusion partner PhaC acts as a functional insolubility partner, providing a natural cross-link to the bead and leading to in vivo immobilization of the scFv. Overproduction of the fusion protein at the polymer bead surface was confirmed by SDS-PAGE and MALDI-TOF/MS analysis of purified beads. Antigen binding functionality and specificity of the beads was assessed by analyzing the binding of beta-galactosidase to scFv-displaying beads and subsequently eluting the bound protein at pH 2.7. A strong enrichment of beta-galactosidase suggested the functional display of scFv at the bead surface as well as the applicability of these beads for antigen purification. Binding of beta-galactosidase to the scFv-displaying beads was quantitatively analyzed by enzyme-linked assays measuring beta-galactosidase activity. These indicated that the anti-beta-galactosidase scFv-displaying beads bound a maximum of 38 ng of beta-galactosidase per 1 microg of bead protein, showing an apparent equilibrium dissociation constant ( KD) of 12 x 10 (-7) M. This study clearly demonstrated that anti-beta-galactosidase scFv-displaying polymer beads can be produced in engineered E. coli in a one-step process by using PhaC as a self-assembly-promoting fusion partner.  相似文献   

3.
A major attraction in using Bacillus subtilis as an expression host for heterologous protein production is its ability to secrete extracellular proteins into the culture medium. To take full advantage of this system, an efficient method for recovering the target protein is crucial. For secretory proteins which cannot be purified by a simple scheme, in vitro biotinylation using biotin ligase (BirA) offers an effective alternative for their purification. The availability of large amounts of quality BirA can be critical for in vitro biotinylation. We report here the engineering and production of an Escherichia coli BirA and its application in the purification of staphylokinase, a fibrin-specific plasminogen activator, from the culture supernatant of Bacillus subtilis via in vitro biotinylation. BirA was tagged with both a chitin-binding domain and a hexahistidine tail to facilitate both its purification and its removal from the biotinylated sample. We show in this paper how, in a unique way, we solved the problem of protein aggregation in the E. coli BirA production system to achieve a yield of soluble functional BirA hitherto unreported in the literature. Application of this novel BirA to protein purification via in vitro biotinylation in general will also be discussed. Biotinylated staphylokinase produced in the study not only can act as an intermediate for easy purification, it can also serve as an important element in the creation of a blood clot targeting and dissolving agent.  相似文献   

4.
5.
6.
Using molecular genetic techniques, a fusion protein has been produced which contains the cellulose-binding domain (CBD) of an exoglucanase (Cex) from Cellulomonas fimi fused to a beta-glucosidase (Abg) from Agrobacterium sp. The CBD functions as an affinity tag for the simultaneous purification and immobilization of the enzyme on cellulose. Binding to cellulose was stable for prolonged periods at temperatures from 4 degrees C to at least 50 degrees C, at ionic strengths from 10 mM to greater than 1 M, and at pH values below 8. The fusion protein can be desorbed from cellulose with distilled water or at pH greater than 8. Immobilized enzyme columns of the fusion protein bound to cotton fibers exhibited stable beta-glucosidase activity for at least 10 days of continuous operation at temperatures up to 37 degrees C. At higher temperatures, the bound enzyme lost activity. The thermal stability of the fusion protein was greatly improved by immobilization. Immobilization did not alter the pH stability. Except for its ability to bind to cellulose, the properties of the fusion protein were virtually the same as those of the native enzyme.  相似文献   

7.
A recombinant plasmid pβCBD was constructed for immobilization of Cellulomonas fimi β-glucosidase (Cbg) using the cellulose-binding domain (CBD) of Bacillus subtilis BSE 616 endo-β-1,4-glucanase (Beg). The Cbg-CBD Beg fusion protein, 80 kDa, was expressed in Escherichia coli and immobilized to Avicel. Cellobiose was completely hydrolyzed with the immobilized fusion protein. The fusion protein bound to Avicel retained full activity during continuous operation for 24 h at 4°C. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
To extend the (strept)avidin-biotin technology for affinity purification of proteins, development of reusable biochips and immobilized enzyme bioreactors, selective immobilization of a protein of interest from a crude sample to a protein array without protein purification and many other possible applications, the (strept)avidin-biotin interaction is better when reversible. A gentle enzymatic method to introduce a biotin analog, desthiobiotin, in a site-specific manner to recombinant proteins carrying a biotinylation tag has been developed. The optimal condition for efficient in vitro desthiobiotinylation catalyzed by Escherichia coli biotin ligase (BirA) in 1-4h has been established by systematically varying the substrate concentrations, reaction time, and pH. Real desthiobiotinylation in the absence of any significant biotinylation using this enzymatic method was confirmed by mass spectrometric analysis of the desthiobiotinylated tag. This approach was applied to affinity purify desthiobiotinylated staphylokinase secreted by recombinant Bacillus subtilis to high purity and with good recovery using streptavidin-agarose. The matrix can be regenerated for reuse. This study represents the first successful application of E. coli BirA to incorporate biotin analog to recombinant proteins in a site-specific manner.  相似文献   

9.
We have cloned the Escherichia coli lipoprotein structural gene (lpp) into a shuttle vector and studied its expression in both E. coli and in Bacillus subtilis. Using in vitro gene fusion techniques, the lpp gene was placed under the control of the promoter for the erythromycin-resistance (ery) gene. This fusion gene directed the synthesis of Braun's prolipoprotein which can be subsequently processed into the mature lipoprotein. In addition to the prolipoprotein, two ery-lpp hybrid proteins containing a 45- and a 22-amino acid extension preceding the NH2 terminus of prolipoprotein, respectively, are also synthesized in E. coli. The synthesis of these three proteins appears to involve the utilization of three distinct translation initiation sites. In B. subtilis, only two proteins are synthesized, the hybrid protein with a 45-amino acid extension and the prolipoprotein. In both E. coli and B. subtilis, the precursor forms of the hybrid proteins are lipid-modified, and they are processed to mature lipoprotein in vivo. These results indicate that internalized signal sequence containing the prolipoprotein modification and processing site (Leu-Ala-Glys-Cys) can function normally and permit the modification of hybrid proteins to lipid-modified precursors which can be subsequently processed by the globomycin-sensitive prolipoprotein signal peptidase.  相似文献   

10.
11.
12.
聚羟基脂肪酸(PHA)颗粒表面结合蛋白Pha P具有与疏水性高分子材料表面紧密结合的能力,本研究将EGFR靶向多肽(ETP)与PhaP进行融合表达,构建了ETP-PhaP融合蛋白表达的重组工程菌Escherichia coli BL21(DE3)(pPI-ETP-P)。经对工程菌株的诱导表达及ETP-PhaP融合蛋白的纯化后,通过PhaP蛋白介导能够有效地将ETP-PhaP融合蛋白修饰于3-羟基丁酸-3-羟基己酸共聚酯(PHBHHx)纳米微球表面,构建成为具有EGFR靶向作用的药物递送载体。分别检测宫颈癌细胞系SiHa(EGFR高表达)和CaSKi(EGFR低表达)对ETP-PhaP修饰的PHBHHx纳米药物载体和未经修饰的纳米药物载体的吞噬情况。结果显示,纯化的ETP-PhaP融合蛋白能够很好地吸附于PHBHHx颗粒的表面,经ETP-PhaP融合蛋白修饰的PHBHHx纳米药物载体对EGFR高表达的宫颈癌Si Ha细胞的靶向效果强于EGFR低表达的CaSKi细胞系。这一结果表明了PhaP介导的PHBHHx纳米微球表面EGFR靶向多肽修饰具有简便、高效的优势,为疏水性纳米药物载体表面功能多肽修饰提供了一种新策略。  相似文献   

13.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

14.
To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass.  相似文献   

15.
The ribosomal protein L2, a constituent protein of the 50S large ribosomal subunit, can be used as Si-tag using silica particles for the immobilization and purification of recombinant proteins (Ikeda et al. (Protein Expr Purif 71:91–95, 2010); Taniguchi et al. (Biotechnol Bioeng 96:1023–1029, 2007)). We applied a diatomite powder, a sedimentary rock mainly composed with diatoms silica, as an affinity solid phase and small ubiquitin-like modifier (SUMO) technology to release a target protein from the solid phase. The L2 (203–273) was the sufficient region for the adsorption of ribosomal protein L2 on diatomite. We comparatively analyzed the different adsorption properties of the two deleted proteins of L2 (L2 (1–60, 203–273) and L2 (203–273)) on diatomite. The time required to reach adsorption equilibrium of L2 (203–273) fusion protein on diatomite was shorter than that of L2 (1–60, 203–273) fusion protein. The maximum adsorption capacity of L2 (203–273) fusion protein was larger than that of L2 (1–60, 203–273) fusion protein. In order to study whether the L2 (203–273) can function as an affinity purification tag, SUMO was introduced as one specific protease cleavage site between the target protein and the purification tags. The L2 (203–273) and SUMO fusion protein purification method was tested using enhanced green fluorescent protein as a model protein; the result shows that the purification performance of this affinity purification method was good. The strong adsorption characteristic of L2 (203–273) on diatomite also provides a potential protein fusion tag for the immobilization of enzyme.  相似文献   

16.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

17.
Intein-mediated rapid purification of Cre recombinase   总被引:1,自引:0,他引:1  
Cre recombinase produced by bacteriophage P1 catalyzes site-specific recombination of DNA between loxP recognition sites in both prokaryotic and eukaryotic cells and has been widely used for genome engineering and in vitro cloning. Recombinant Cre has been overproduced in Escherichia coli and its purification involves multiple steps. In this report, we used an "intein" fusion system to express Cre as a C-terminal fusion to a modified protein splicing element, i.e., intein. The modified intein contained a Bacillus circulans chitin-binding domain which allowed binding of the fusion protein on a chitin column and could be induced to undergo in vitro peptide bond cleavage which specifically released Cre from the column. Using the intein system, we have obtained highly pure nontagged Cre after just a single chromatographic step, which corresponded to approximately 80% recovery and 27-fold purification. The activity of the purified Cre was determined in an in vitro assay system and was found to remain stable over a period of more than 6 months.  相似文献   

18.
Streptococcal protein G is an IgG-binding receptor with a molecular weight of 63 kDa as predicted from the sequence of the corresponding gene. Here we show that a truncated recombinant protein of 23 kDa still has IgG-binding capacity and also interacts specifically with human serum albumin (HSA). This demonstrates that protein G is a bifunctional receptor. To investigate the structures needed for IgG- and albumin-binding, different parts of the receptor molecule were produced in E. coli using a coupled expression/secretion system. Affinity chromatography, using IgG or HSA immobilized on Sepharose, showed that the two binding activities are structurally separated. From these experiments, it was concluded that a region of 64 amino acid residues is sufficient for albumin-binding. The structure of this part of the protein suggests either a divalent or a trivalent binding capacity. The specific interaction to albumin was used to purify a heterologous protein by affinity chromatography to yield a pure fusion protein in a one-step procedure. The implication of this novel affinity system as a tool to facilitate protein immobilization and purification is discussed.  相似文献   

19.
A biologically active variant form of recombinant human secretin was produced using a gene fusion system designed to facilitate the purification of the protein. The fusion protein was recovered from the culture medium of Escherichia coli by IgG affinity chromatography, and recombinant secretin was released by cyanogen bromide treatment. A novel approach involving addition of a C-terminal Gly-Lys-Arg extension, was used to overcome the lack of amidation of recombinant proteins in Escherichia coli. The biological activity of the recombinant variant of secretin was at least 80% of the porcine secretin standard.  相似文献   

20.
融合标签技术及其应用   总被引:4,自引:0,他引:4  
融合标签最初是作为一种有效的工具用于纯化重组蛋白质,近几年的研究表明,融合标签的作用并不局限于此。本文综述了融合标签技术的发展及在生命科学研究中的各种应用,包括重组蛋白质的纯化;目的蛋白质的检测、定向固定;体内生物事件的可视化;提高重组蛋白质的产量;增强重组蛋白质的可溶性及稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号