首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
An essential function of DNA glycosylases is the recognition and excision of damaged bases in DNA, thereby preserving genomic integrity. Lesion recognition is a multistep process, which is only partially revealed by structural analysis of the catalytically competent complex. The functional role of additional residues can be predicted by combining structural data with analysis of amino acid conservation. The following postulate underlies this approach: if a family or superfamily can be broken into subgroups with different substrate specificities, residues highly conserved between these subgroups represent those important for enzyme catalysis and structure maintenance while residues highly conserved within a subgroup but not between subgroups represent residues important for substrate specificity. We review the bioinformatics approach used for this quantitative analysis and describe its application to the Nth superfamily and Fpg family of DNA glycosylases. These results serve as a starting point in planning site-directed mutagenesis experiments to elucidate the functional role of similar and dissimilar residues in DNA repair and other proteins.  相似文献   

3.
利用差异显示PCR技术获得的一条在胃癌癌旁和正常组织表达量高的EST-W123,通过与GenBank的dbest库进行电子交,选取了与W123同源度高的若干EST,在它们共有的保守序列设计了用于扩增的寡聚核苷酸引物,利用cDNA末端快速扩增(RACE)技术得到了7条带有polyA尾的3'EST,进行序列分析后,发现它们均是代表新基因或不同剪接体的EST,且具有共同的保守序列,已登录GenBank。  相似文献   

4.
Comparing patterns of gene expression in cell lines and tissues has important applications in a variety of biological systems. In this study we have examined whether the emerging technology of cDNA microarrays will allow a high throughput analysis of expression of cDNA clones generated by suppression subtractive hybridization (SSH). A set of cDNA clones including 332 SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with fluorescent labeled probes prepared from RNA from ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231 and HBL-100) breast cancer cell lines. Ten clones were identified that were over-expressed by at least a factor of five in the ER-positive cell lines. Northern blot analysis confirmed over-expression of these 10 cDNAs. Sequence analysis identified four of these clones as cytokeratin 19, GATA-3, CD24 and glutathione-S-transferase mu-3. Of the remaining six cDNA clones, four clones matched EST sequences from two different genes and two clones were novel sequences. Flow cytometry and immunofluorescence confirmed that CD24 protein was over-expressed in the ER-positive cell lines. We conclude that SSH and microarray technology can be successfully applied to identify differentially expressed genes. This approach allowed the identification of differentially expressed genes without the need to obtain previously cloned cDNAs.  相似文献   

5.
Global computing, the collaboration of idle PCs via the Internet in a SETI@home style, emerges as a new way of massive parallel multiprocessing with potentially enormous CPU power. Its relations to the broader, fast-moving field of Grid computing are discussed without attempting a review of the latter. This review (i) includes a short table of milestones in global computing history, (ii) lists opportunities global computing offers for bioinformatics, (iii) describes the structure of problems well suited for such an approach, (iv) analyses the anatomy of successful projects and (v) points to existing software frameworks. Finally, an evaluation of the various costs shows that global computing indeed has merit, if the problem to be solved is already coded appropriately and a suitable global computing framework can be found. Then, either significant amounts of computing power can be recruited from the general public, or--if employed in an enterprise-wide Intranet for security reasons--idle desktop PCs can substitute for an expensive dedicated cluster.  相似文献   

6.
About five years ago, ontology was almost unknown in bioinformatics, even more so in molecular biology. Nowadays, many bioinformatics articles mention it in connection with text mining, data integration or as a metaphysical cure for problems in standardisation of nomenclature and other applications. This article attempts to give an account of what concept ontologies in the domain of biology and bioinformatics are; what they are not; how they can be constructed; how they can be used; and some fallacies and pitfalls creators and users should be aware of.  相似文献   

7.
Training for bioinformatics and computational biology   总被引:1,自引:0,他引:1  
  相似文献   

8.
Mitochondrial function is of particular importance in brain because of its high demand for energy (ATP) and efficient removal of reactive oxygen species (ROS). We developed rat mitochondrion-neuron focused microarray (rMNChip) and integrated bioinformatics tools for rapid identification of differential pathways in brain tissues. rMNChip contains 1,500 genes involved in mitochondrial functions, stress response, circadian rhythms and signal transduction. The bioinformatics tool includes an algorithm for computing of differentially expressed genes, and a database for straightforward and intuitive interpretation for microarray results. Our application of these tools to RNA samples derived from rat frontal cortex (FC), hippocampus (HC) and hypothalamus (HT) led to the identification of differentially-expressed signal-transduction-bioenergenesis and neurotransmitter-synthesis pathways with a dominant number of genes (FC/HC = 55/6; FC/HT = 55/4) having significantly (p<0.05, FDR<10.70%) higher (≥1.25 fold) RNA levels in the frontal cortex than the others, strongly suggesting active generation of ATP and neurotransmitters and efficient removal of ROS. Thus, these tools for rapid and efficient identification of differential pathways in brain regions will greatly facilitate our systems-biological study and understanding of molecular mechanisms underlying complex and multifactorial neurodegenerative diseases.  相似文献   

9.
The quantification of neuropeptides may play a significant role in future drug development targeting central nervous system functions. Adequate method precision and accuracy is essential, and sample stability is an important factor. This study compares three sample preparation protocols and assesses the stability of targeted neuropeptides under standard laboratory conditions. The results show that the concentrations of substance P, dynorphin A, and calcitonin gene-related peptide (CGRP) change significantly in time when spinal cord tissues are homogenized in phosphate-buffered saline (PBS) buffer or PBS buffer containing a mammalian protease inhibitor cocktail but is stabilized when tissues are homogenized in a 0.25% trifluoroacetic acid solution.  相似文献   

10.
11.
Utility library for structural bioinformatics   总被引:1,自引:0,他引:1  
  相似文献   

12.
Emerging bioinformatics for the metabolome   总被引:6,自引:0,他引:6  
Metabolic profiling applied to functional genomics (metabolomics) is in an early stage of development. Here, the technologies used for metabolite profiling are briefly covered, illustrated by a few pioneering studies. Issues related to bioinformatics, namely data analysis, visualisation and archival, are the main focus of this review. Arguably there is already a need for databases containing metabolite profiles specific for a single organism, and a generic repository containing all metabolite profiling results, regardless of species. Data analyses and visualisations that combine the biological context with chemistry details are suggested as being the most promising.  相似文献   

13.
14.
Advanced research requires intensive interaction among a multitude of actors, often possessing different expertise and usually working at a distance from each other. The field of collaborative research aims to establish suitable models and technologies to properly support these interactions. In this article, we first present the reasons for an interest of Bioinformatics in this context by also suggesting some research domains that could benefit from collaborative research. We then review the principles and some of the most relevant applications of social networking, with a special attention to networks supporting scientific collaboration, by also highlighting some critical issues, such as identification of users and standardization of formats. We then introduce some systems for collaborative document creation, including wiki systems and tools for ontology development, and review some of the most interesting biological wikis. We also review the principles of Collaborative Development Environments for software and show some examples in Bioinformatics. Finally, we present the principles and some examples of Learning Management Systems. In conclusion, we try to devise some of the goals to be achieved in the short term for the exploitation of these technologies.  相似文献   

15.
Bruhn RE  Burton PJ 《BioTechniques》2003,34(6):1200-2, 1204, 1206 passim
Data interchange bioinformatics databases will, in the future, most likely take place using extensible markup language (XML). The document structure will be described by an XML Schema rather than a document type definition (DTD). To ensure flexibility, the XML Schema must incorporate aspects of Object-Oriented Modeling. This impinges on the choice of the data model, which, in turn, is based on the organization of bioinformatics data by biologists. Thus, there is a need for the general bioinformatics community to be aware of the design issues relating to XML Schema. This paper, which is aimed at a general bioinformatics audience, uses examples to describe the differences between a DTD and an XML Schema and indicates how Unified Modeling Language diagrams may be used to incorporate Object-Oriented Modeling in the design of schema.  相似文献   

16.
Artificial intelligence techniques for bioinformatics   总被引:1,自引:0,他引:1  
This review provides an overview of the ways in which techniques from artificial intelligence (AI) can be usefully employed in bioinformatics, both for modelling biological data and for making new discoveries. The paper covers three techniques: symbolic machine learning approaches (nearest neighbour and identification tree techniques), artificial neural networks and genetic algorithms. Each technique is introduced and supported with examples taken from the bioinformatics literature. These examples include folding prediction, viral protease cleavage prediction, classification, multiple sequence alignment and microarray gene expression analysis.  相似文献   

17.
18.
MOTIVATION: The genome of Arabidopsis thaliana, which has the best understood plant genome, still has approximately one-third of its genes with no functional annotation at all from either MIPS or TAIR. We have applied our Data Mining Prediction (DMP) method to the problem of predicting the functional classes of these protein sequences. This method is based on using a hybrid machine-learning/data-mining method to identify patterns in the bioinformatic data about sequences that are predictive of function. We use data about sequence, predicted secondary structure, predicted structural domain, InterPro patterns, sequence similarity profile and expressions data. RESULTS: We predicted the functional class of a high percentage of the Arabidopsis genes with currently unknown function. These predictions are interpretable and have good test accuracies. We describe in detail seven of the rules produced.  相似文献   

19.
Current research in the biosciences depends heavily on the effective exploitation of huge amounts of data. These are in disparate formats, remotely dispersed, and based on the different vocabularies of various disciplines. Furthermore, data are often stored or distributed using formats that leave implicit many important features relating to the structure and semantics of the data. Conceptual data modelling involves the development of implementation-independent models that capture and make explicit the principal structural properties of data. Entities such as a biopolymer or a reaction, and their relations, eg catalyses, can be formalised using a conceptual data model. Conceptual models are implementation-independent and can be transformed in systematic ways for implementation using different platforms, eg traditional database management systems. This paper describes the basics of the most widely used conceptual modelling notations, the ER (entity-relationship) model and the class diagrams of the UML (unified modelling language), and illustrates their use through several examples from bioinformatics. In particular, models are presented for protein structures and motifs, and for genomic sequences.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号