首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: We investigated the gene expression levels, the immunoreactive protein prevalence, and the functional activity of N -methyl- d -aspartate (NMDA) receptor complexes at early times after severe global ischemia challenge in rats. The mRNA expression levels for the NR2A and NR2B subunits of NMDA receptors changed to different degrees within different subregions of the hippocampus after reperfusion with respect to sham-operated control. No significant change in expression was observed in the vulnerable CA1 subfield at or before 6 h after challenge for either receptor subunit, although changes in expression in other hippocampal subfields were observed. At 12 and 24 h after challenge, significant decreases in expression for both subunits were found in the vulnerable CA1 subfield, as well as in other hippocampal regions. At the protein level, a significant decrease in the amount of NR2A/NR2B immunoreactivity in the total hippocampus was observed at both 6 and 24 h after reperfusion compared with sham control. Electrophysiological assessment of single-channel NMDA receptor activity in the CA1 subfield indicates that the main conductance state of NMDA receptor channels is maintained 6 h after challenge, although by 18–24 h after challenge, this main conductance state is rarely observed. The NMDA receptor component of the excitatory postsynaptic field potential was found to be significantly diminished from sham control 24 h after challenge, such that only ∼10% of the sham response remained, but was not significantly altered from sham control at 6 h after challenge. These results indicate that decreases in the expression levels, the immunoreactive protein prevalence, and that alterations in the functionality of NMDA receptors occur in the hippocampus at early times after severe transient global ischemia.  相似文献   

3.
Abstract: Transient forebrain or global ischemia in rats induces selective and delayed damage of hippocampal CA1 neurons. In a previous sludy, we have shown that expression of GIuR2, the kainate/a-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that governs Ca' permeability, is preferentially reduced in CA1 at a time point proceeding neuronal degeneration. Postischemic administration of the selective AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), protects CAI neurons against delayed death. In this study we examined the effects of NBQX (at a neuroprotective dose) and of MK-801 (a selective NMDA receptor anltagonist, not protective in this model) on kainate/AMPA receptor gene expression changes after global ischemia. We also examined the effects of transient forebrain ischemia on expression of the NMDA receptor subunit NMDARI. In ischemic rats treated with saline, GIuR2 and (31uR3 mRNAs were markedly reduced in CAI but were unchanged in CA3 or dentate gyrus. GluRl and NMDAR1 mRNAs were not significantly changed in any region examined. Administration of NBQX or MK-801 did not alter the ischemia-induced changes in kainate/AMPA receptor gene expression. These findings suggest that NBQX affords neuroprotection by a direct blockade of kainate/AMPA receptors, rather than by a modificatian of GIuR2 expression changes  相似文献   

4.
Abstract: Developmental changes in the levels of N -methyl- d -aspartate (NMDA) receptor subunit mRNAs were identified in rat brain using solution hybridization/RNase protection assays. Pronounced increases in the levels of mRNAs encoding NR1 and NR2A were seen in the cerebral cortex, hippocampus, and cerebellum between postnatal days 7 and 20. In cortex and hippocampus, the expression of NR2B mRNA was high in neonatal rats and remained relatively constant over time. In contrast, in cerebellum, the level of NR2B mRNA was highest at postnatal day 1 and declined to undetectable levels by postnatal day 28. NR2C mRNA was not detectable in cerebellum before postnatal day 11, after which it increased to reach adult levels by postnatal day 28. In cortex, the expression of NR2A and NR2B mRNAs corresponds to the previously described developmental profile of NMDA receptor subtypes having low and high affinities for ifenprodil, i.e., a delayed expression of NR2A correlating with the late expression of low-affinity ifenprodil sites. In cortex and hippocampus, the predominant splice variants of NR1 were those without the 5' insert and with or without both 3' inserts. In cerebellum, however, the major NR1 variants were those containing the 5' insert and lacking both 3' inserts. The results show that the expression of NR1 splice variants and NR2 subunits is differentially regulated in various brain regions during development. Changes in subunit expression are likely to underlie some of the changes in the functional and pharmacological properties of NMDA receptors that occur during development.  相似文献   

5.
6.
7.
It has been hypothesized that glutamatergic neurotransmission is related to the therapeutic effect of antipsychotic drugs. To test this hypothesis, we measured by use of the Western blot technique the polypeptide levels of NMDA receptor subunits, that is, NMDAR1, 2A, 2B, and 2C, in several regions of the rat brain after chronic treatment with haloperidol (HPD) or clozapine (CLZ). Each rat was intraperitoneally injected with HPD or CLZ at 10:00 h daily for 14 days. The brain regions examined were frontal cortex, striatum, nucleus accumbens, hippocampus, and cerebellum. Decreases in the polypeptide level of NMDAR2B were seen in hippocampus (but not in other brain regions) following the treatment with HPD or CLZ. Altered levels in NMDAR1-, 2A-, and 2C were not detected in any brain regions examined. We infer that an alteration in NMDAR2B in hippocampus is related to therapeutic effects of antipsychotic drugs.  相似文献   

8.
Ouabain exerts neurotoxic action and activates the population of NMDA receptors. Herein the effect of ouabain on the expression of NMDA subunits was evaluated. Adult Wistar rats were administered intracerebroventricularly with 0.1, 10 and 100 nmol ouabain or saline solution (control). Two days later, membranes of cerebral cortex and hippocampus were isolated. Western blots with antibodies for the NMDA receptor subunits: NR1; NR2A; NR2B; NR2C and NR2D were carried out. In cerebral cortex, NR2D subunit increased 30% with 10 nmol ouabain dose. With 100 nmol ouabain, NR1 and NR2D subunits enhanced 40 and 20%, respectively. In hippocampus, with the dose of 0.1 nmol ouabain, NR1 subunit enhanced roughly 50% whereas NR2B subunit decreased 30%. After administration of 10 nmol ouabain dose, NR2A, NR2B and NR2C subunits decreased 40, 50 and 30%, respectively. With the dose of 100 nmol of ouabain, NR1, NR2A and NR2B subunits diminished 10–20%. It is concluded that ouabain administration led to a differential regulation in the expression of NMDA subunits. These results may be correlated with the modulatory action of ouabain on NMDA receptor.  相似文献   

9.
Abstract: Optimum conditions were determined for the solubilisation of native NMDA receptors of adult mammalian brain with the retention of [3H]MK-801 radioligand binding activity. The most efficient conditions were 1% Triton X-100/1 M NaCl. The efficiency of solubilisation was as follows: cloned NMDA receptors expressed in mammalian cells > forebrain receptors > cerebellar receptors. Triton X-100/1 M NaCl-solubilised forebrain NMDA receptors had a molecular size of 710,000 daltons, but significant NR1 immunoreactivity (41%) migrated as a monomer of 125,000 daltons. Immunoaffinity purification of NMDA receptors from forebrain by anti-NR1 911–920 antibody affinity chromatography from 1% Triton X-100/1 M NaCl solubilised extracts yielded purification of the NR1 Mr 120,000 immunoreactive species, but no detectable NR2A or NR2B immunoreactivity. Immunoprecipitation of NMDA receptors from Triton X-100/1 M NaCl extracts with anti-NR1 911–920 antibodies also resulted in precipitation of NR1 subunits, but with no detectable NR2A or NR2B subunits. In contrast, by immunoprecipitation with anti-NR1 17–35 antibodies, which recognise all forms of NR1, NR1, NR2A, and NR2B immunoreactivities were detected in the immune pellets. Similarly, a coassociation of NR1, NR2A, and NR2B subunits was demonstrated following extraction of forebrain membranes with 1% sodium deoxycholate (pH 9) and purification by anti-NR1 911–920 antibody affinity chromatography. These results are consistent with the identification of a pool of unassembled C2 exon-containing NR1 subunits, i.e., NR1-1a, NR1-1b, NR1-2a, and NR1-2b, selectively solubilised by 1% Triton X-100/1 M NaCl.  相似文献   

10.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   

11.
Ji D  Sui ZY  Ma YY  Luo F  Cui CL  Han JS 《Neurochemical research》2004,29(11):2113-2120
The purpose of the present study is to elucidate whether ketamine, a non-competitive antagonist of the NMDA receptor, can suppress the morphine withdrawal syndrome in rats at a dose without affecting motor functions and to identify its site of action in the central nervous system. Rats were made dependent on morphine by multiple injections of morphine hydrochloride for 5 days. They were then given ketamine at the following doses and routes of administration: (a) intraperitoneal (i.p.) injections (2–16 mg/kg), (b) intracerebroventricular (i.c.v.) injections (4–100 g), and (c) intra-nucleus accumbens (NAc) or intra-amygdalar microinjections (0.4–10 g). Naloxone HCl (1 mg/kg, i.p.) was administered 3 h after the last ketamine injection to precipitate withdrawal syndrome, which was scored within a period of 30 min. Results showed that some of the precipitated withdrawal signs were dose-dependently suppressed by repeated injections of ketamine at 8 and 16 mg/kg, i.p. or 100 g, i.c.v. Dose-dependent suppression was observed by repeated microinjections (0.4–10 g) of ketamine to NAc, but not to amygdala. These results indicate that the NMDA receptor antagonist ketamine has the ability to suppress morphine withdrawal syndrome in experimental settings without motor interference, and NAc could be the critical CNS site mediating such effect.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

12.
人IL-6受体是一个在各种细胞上广泛表达的跨膜糖蛋白分子,是IL-6发挥细胞效应所必需的。本文通过将IL-6RcDNA重组到痘苗病毒的TK基因中构建成重组痘苗病毒VIL6R。细胞原位杂交和APAAP染色结果表明,感染VIL6R后的Vero细胞中,IL-6R在mRNA和蛋白水平上均呈现较强的表达。Westernblot分析所表达的分子量为80kD,表明所表达的产物是糖基化的。IL-6结合试验表明,表达的膜IL-6R能够结合rIL-6,说明它是有功能的。利用VIL6R免疫小鼠后,能够刺激较强的抗体产生。从而为进一步研究IL-6R的信号传导和构效关系提供了基础。  相似文献   

13.
14.
目的:探讨妊娠期大鼠经炎症免疫刺激后对胚胎基因表达谱的影响.方法:选取6只孕鼠,分别腹腔注射LPS及Zymosan后,取胚胎抽提总RNA,经纯化反转录等过程合成生物素标记的cRNA,经片断化后与Rat Genome 230 2.0 Array芯片杂交,读取芯片结果并进行分析.结果:LPS组有183个基因上调、270个基因表达下调,Zymosan组有144个基因表达上调、417个基因表达下调.有50个基因在上述两组中均表达上调,其中已知功能的有9个;有173个基因在上述两组中表达均下调,已知功能的有85个.结论:应用全基因组芯片筛选了孕鼠经炎症刺激后胚胎差异表达的基因,为进一步研究孕鼠经炎症刺激后仔鼠血压升高的机制提供了新的思路.  相似文献   

15.
The present study tests the hypothesis that pretreatment with allopurinol, a xanthine oxidase inhibitor, will prevent modification of the NMDA receptor during cerebral hypoxia in newborn piglets. Eighteen newborn piglets were studied. Six normoxic control animals were compared to six untreated hypoxic and six allopurinol (20 mg/kg i.v.) pretreated hypoxic piglets. Cerebral hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 hour and tissue hypoxia was confirmed biochemically by the measurement of ATP and phosphocreatine. Brain cell membrane Na+,K+-ATPase activity was determined to assess membrane function. Na+,K+-ATPase activity was decreased from control in both the untreated and treated hypoxic animals (46.0 ± 1.0 vs 37.9 ± 2.5 and 37.3 ± 1.4 mol Pi/mg protein/hr, respectively, p < 0.05). [3H]MK-801 binding was determined as an index of NMDA receptor modification. The receptor density (Bmax) in the untreated hypoxic group was decreased compared to normoxic control (1.09 ± 0.17 vs 0.68 ± 0.22 pmol/mg protein, p < 0.01). The dissociation constant (Kd) was also decreased in the untreated group (10.0 ± 2.0 vs 4.9 ± 1.4 nM, p < 0.01), indicating an increase in receptor affinity. However, in the allopurinol treated hypoxic group, the Bmax (1.27 ± 0.09 pmol/mg protein) was similar to normoxic control and the Kd (8.1 ± 1.2 nM, p < 0.05) was significantly higher than in the untreated hypoxic group. The data show that the administration of allopurinol prior to hypoxia prevents hypoxia-induced modification of the NMDA receptor-ion channel binding characteristics, despite neuronal membrane dysfunction. By preventing NMDA receptor-ion channel modification, allopurinol may produce a neuromodulatory effect during hypoxia and attenuate NMDA receptor mediated excitotoxicity.  相似文献   

16.
17.
This study examined how perinatal phencyclidine (PCP) treatment would affect dopamine D2 receptor and dopamine transporter (DAT) binding at different stages after treatment cessation. Female rat pups received injections of PCP (10 mg/kg, s.c.) or saline on postnatal day (PN)7, 9 and 11. D2 receptor and transporter binding was examined at four time-points (PN12, 18, 32 and 96) following injections. PCP treatment altered D2 receptor binding throughout development, with a final end-point of 22-33% decreased binding at adulthood in the nucleus accumbens and caudate putamen (P < 0.01), accompanied by a small but significant increase in DAT binding in the caudate putamen. Tyrosine hydroxylase mRNA expression was also significantly increased by 25% (P < 0.05) in the ventral tegmental area of adult rats, suggesting that this model may produce a long-term increase in dopamine output. This study demonstrates that early insult to the brain from NMDA receptor hypofunction alters the dopaminergic system at different stages of development.  相似文献   

18.
We proposed that acute ammonia toxicity is mediated by activation of NMDA receptors. To confirm this hypothesis we have tested whether different NMDA receptor antagonists, acting on different sites of NMDA receptors, prevent death of mice induced by injection of 14 mmol/Kg of ammonium acetate, a dose that induces death of 95% of mice. MK-801, phencyclidine and ketamine, which block the ion channel of NMDA receptors, prevent death of at least 75% of mice. CPP, AP-5, CGS 19755, and CGP 40116, competitive antagonists acting on the binding site for NMDA, also prevent death of at least 75% of mice. Butanol, ethanol and methanol which block NMDA receptors, also prevent death of mice. There is an excellent correlation between the EC50 for preventing ammonia-induced death and the IC50 for inhibiting NMDA-induced currents. Acute ammonia toxicity is not prevented by antagonists of kainate/AMPA receptors, of muscarinic or nicotinic acetylcholine receptors or of GABA receptors. Inhibitors of nitric oxide synthase afford partial protection against ammonia toxicity while inhibitors of calcineurin, of glutamine synthetase or antioxidants did not prevent ammonia-induced death of mice. These results strongly support the idea that acute ammonia toxicity is mediated by activation of NMDA receptors.  相似文献   

19.
Tyrosine hydroxylase, aromatic L-amino-acid decarboxylase, and dopamine beta-hydroxylase activities were studied in the developing fetal rat brain. A delay of 2-3 days between the detection of the tyrosine hydroxylase and the aromatic L-amino-acid decarboxylase and dopamine beta-hydroxylase activities was observed. For this reason, the expression of tyrosine hydroxylase mRNA was studied. Tyrosine hydroxylase mRNA was visualized in the whole brain from 13 days of gestation, but the largest increase of the expression was observed in the hypothalamus. These results are discussed in terms of the relative gene expressions of the three enzymes involved in the biosynthesis of catecholamines and phenolamines in nervous tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号