首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of altered extracellular pH, mitochondrial function, and ATP content on development of apoptosis in human pulmonary artery endothelial cells after treatment with staurosporine (STS). STS produced a concentration- and time-dependent increase in caspase-3 activity in pH 7.4 medium that reached a peak at 6 h. The increase in caspase activity was associated with significant DNA fragmentation. Fluorescent imaging of treated monolayers in pH 7.4 medium with Hoechst-33342-propidium iodide demonstrated a large percentage of apoptotic cells ( approximately 40%) with no evidence of necrosis. Caspase activity, DNA fragmentation, and percentage of apoptotic cells were reduced after STS treatment in acidic media (pH 7.0 and 6.6). The Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM inhibited STS-induced apoptosis, whereas the rise in intracellular Ca2+concentration in STS-treated cells in pH 7.4 medium was reduced in pH 7.0 medium. These results suggest that one mechanism for inhibitory effects of acidosis may be a pH-induced alteration in Ca2+ signaling. Treatment with STS in the presence of oligomycin (10 microM), an inhibitor of the mitochondrial F(0)F(1)-ATPase, in glucose-free media abolished caspase activation and DNA fragmentation in association with severe ATP depletion ( approximately 2% of control cells). Imaging demonstrated a change in the mode of cell death from apoptosis to necrosis under these conditions. This change was linked to the level of ATP depletion, because STS treatment in the absence of glucose or the presence of oligomycin in media with glucose still leads to apoptosis in the presence of only moderate ATP depletion. These results demonstrate that pH, mitochondrial function, and ATP supply are important variables that regulate STS-induced apoptosis in human pulmonary artery endothelial cells.  相似文献   

2.
Calcium ion is essential for cellular functions including signal transduction. Uncontrolled calcium stress has been linked causally to a variety of neurodegenerative diseases. Thapsigargin, which inhibits Ca2+-ATPase in the endoplasmic reticulum (ER) and blocks the sequestration of calcium by the ER, induced apoptotic cell death (chromatin condensation and nuclear fragmentation) accompanied by GRP78 protein expression and caspase-3 activation in rat fetal cortical neurons (days in vitro 9–10). Blockade of N-methyl-d-aspartate (NMDA) receptors with NMDA antagonists induced apoptosis without GRP78 protein expression. Apoptosis accompanied both caspase-9 and caspase-3 activation. We then examined whether GSK-3 is involved in thapsigargin-induced cell death by using GSK-3 inhibitors. We assayed the effects of selective GSK-3 inhibitors, SB216763, alsterpaullone and 1-azakenpaullone, on thapsigargin-induced apoptosis. These inhibitors completely protected cells from thapsigargin-induced apoptosis. In addition, GSK-3 inhibitors inhibited caspase-9 and caspase-3 activation accompanied by thapsigargin-induced apoptosis. These results suggest that thapsigargin induces caspase-dependent apoptosis mediated through GSK-3β activation in rat cortical neurons.  相似文献   

3.
Beta-lapachone, an o-naphthoquinone, induces various carcinoma cells to undergo apoptosis, but the mechanism is poorly understood. In the present study, we found that the beta-lapachone-induced apoptosis of DU145 human prostate carcinoma cells was associated with endoplasmic reticulum (ER) stress, as shown by increased intracellular calcium levels and induction of GRP-78 and GADD-153 proteins, suggesting that the endoplasmic reticulum is a target of beta-lapachone. Beta-Lapachone-induced DU145 cell apoptosis was dose-dependent and accompanied by cleavage of procaspase-12 and phosphorylation of p38, ERK, and JNK, followed by activation of the executioner caspases, caspase-7 and calpain. However, pretreatment with the general caspase inhibitor, z-VAD-FMK, or calpain inhibitors, including ALLM or ALLN, failed to prevent beta-lapachone-induced apoptotic cell death. Blocking the enzyme activity of NQO1 with dicoumarol, a known NQO1 inhibitor, or preventing an increase in intracellular calcium levels using BAPTA-AM, an intracellular calcium chelator, substantially inhibited MAPK phosphorylation, abolished the activation of calpain, caspase-12 and caspase-7, and provided significant protection of beta-lapachone-treated cells. These findings show that beta-lapachone-induced ER stress and MAP kinase phosphorylation is a novel signaling pathway underlying the molecular mechanism of the anticancer effect of beta-lapachone.  相似文献   

4.
We investigated the effects of alkaline pH on developing osteoblasts. Cells of the osteoblast-like cell line MC3T3-E1 were initially cultured for six days in HEPES-buffered media with pH ranging from 7.2 to 9.0. Cell count, cellular WST-1 metabolism, and ATP content were analyzed. The three parameters showed a pH optimum around pH 8.4, exceeding the recommended buffer range of HEPES at the alkaline flank. Therefore, only pH 7.2, 7.4, 7.8, and 8.4 media were used in more elaborate, daily investigations to reduce the effects of pH change within the pH control intervals of 24 h. All parameters exhibited similar pH behaviors, roughly showing increases to 130% and 230% at pH 7.8 and 8.4, as well as decreases to 70% at pH 7.2 when using the pH 7.4 data for reference. To characterize cell differentiation and osteoblastic cell function, cells were cultured at pH 7.4 and under alkaline conditions at pH 7.8 and 8.4 for 14 days. Gene expression and mineralization were evaluated using microarray technology and Alizarin staining. Under alkaline conditions, ATF4, a regulator for terminal differentiation and function as well as DMP1, a potential marker for the transition of osteoblasts into osteocytes, were significantly upregulated, hinting at an accelerated differentiation process. After 21 days, significant mineralization was only detected at alkaline pH. We conclude that elevated pH is beneficial for the cultivation of bone cells and may also provide therapeutic value in bone regeneration therapies.  相似文献   

5.
Autophagy regulates cell survival (or cell death in several cases), whereas apoptosis regulates cell death. However, the relationship between autophagy and apoptosis and the regulative mechanism is unclear. We report that steroid hormone 20-hydroxyecdysone (20E) promotes switching from autophagy to apoptosis by increasing intracellular calcium levels in the midgut of the lepidopteran insect Helicoverpa armigera. Autophagy and apoptosis sequentially occurred during midgut programmed cell death under 20E regulation, in which lower concentrations of 20E induced microtubule-associated protein 1 light chain 3–phosphatidylethanolamine (LC3–II, also known as autophagy-related gene 8, ATG8) expression and autophagy. High concentrations of 20E induced cleavage of ATG5 to NtATG5 and pro-caspase-3 to active caspase-3, which led to a switch from autophagy to apoptosis. Blocking autophagy by knockdown of ATG5, ATG7, or ATG12, or with the autophagy inhibitor 3-methyladenine, inhibited 20E-induced autophagy and apoptosis. Blocking apoptosis by using the apoptosis inhibitor Ac-DEVD-CHO did not prevent 20E-induced autophagy, suggesting that apoptosis relies on autophagy. ATG5 knockdown resulted in abnormal pupation and delayed pupation time. High concentrations of 20E induced high levels of intracellular Ca2+, NtATG5, and active caspase-3, which mediated the switch from autophagy to apoptosis. Blocking 20E-mediated increase of cellular Ca2+ caused a decrease of NtATG5 and active caspase-3 and repressed the transformation from autophagy to apoptosis, thereby promoting cell survival. 20E induces an increase in the concentration of intracellular Ca2+, thereby switching autophagic cell survival to apoptotic cell death.  相似文献   

6.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

7.
Activation of initiator and effector caspases and Bid cleavage are apoptotic characteristic features. They are associated with cell alkalization or acidification in some models of apoptosis. The alteration of culture conditions such as extracellular pH value and the overexpression of Bid plasmids may induce cell apoptosis. In present report, we used fluorescence confocal imaging and fluorescence resonance energy transfer (FRET) techniques based on green fluorescent proteins (GFPs) to monitor the spatio-temporal dynamics of Bid translocation and caspase-3 activation in real time in living human lung adenocarcinoma (ASTC-a-1) cells under neutral (pH 7.4) and alkaline (pH 8.0) conditions. The cells transfected with Bid-CFP plasmid did not show apoptotic characteristics for 96 hours under an atmosphere of 95% air, 5% CO(2) at pH 7.4 and 37 degrees C, implying that the overexpression of Bid-CFP plasmid does not induce cell apoptosis. However, all the cells underwent apoptosis after being placed in the alkaline culture (pH 8.0). The dynamic results in single living cell showed that the alkaline condition at pH of 8.0 induced Bid cleavage and tBid translocation to mitochondria at about 1.5 hour, and then induced the caspase-3 activation and cell apoptosis. These results show that the alkaline sondition (pH=8.0) induces cell apoptosis by activating caspase-8, which cleaves Bid to tBid, tBid translocation to mitochondria, and then activating the caspase-3 in the ASTC-a-1 cells.  相似文献   

8.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

9.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

10.
In this study, we investigated apoptosis induced in human trisomic and diabetic fibroblasts by daunorubicin (DNR) and its derivative, idarubicin (IDA). The cells were incubated with DNR or IDA for 2 h and then cultured in a drug-free medium for a further 2–48 h. The apoptosis in the cultured cell lines was assessed by biochemical analysis. We found that both drugs induced a timedependent loss of mitochondrial membrane potential, and a significant increase in intracellular calcium and caspase-3 activity. Mitochondrial polarization and changes in the level of intracellular calcium were observed during the first 2–6 h after drug treatment. Caspase-3 activation occurred in the late stages of the apoptotic pathway. Our findings also demonstrated that idarubicin was more cytotoxic and more effective than daunorubicin in inducing apoptosis in trisomic and diabetic fibroblasts.  相似文献   

11.
Abstract: Amyloid β-peptide (Aβ) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that Aβ25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to Aβ25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by Aβ25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of Aβ25-35 were specific because Aβ1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of Aβ1-40 aggregates and because astrocytes did not undergo similar changes after exposure to Aβ25-35. Damage and death of ECs induced by Aβ25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that Aβ induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then Aβ and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation.  相似文献   

12.
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis.  相似文献   

13.
Selenoprotein S (SelenoS) is one of the cellular endoplasmic reticulum (ER) and membrane located selenoproteins, and it has the main functions of anti-oxidation, anti-apoptosis and anti-ER stress. To investigate the effect of SelenoS silencing on mouse hepatoma cell death and the intracellular biological function of SelenoS, we knocked down SelenoS in Hepa1-6 cells, and detected ER stress, intracellular calcium homeostasis, mitochondrial dynamics, apoptosis and necrosis. To further explore whether reactive oxygen species (ROS) has an effect on apoptosis and necrosis under SelenoS silencing, we used NAC (2.5?mM) to pretreat cells, and detected ΔΨm, ATP, and apoptosis and necrosis rates. SelenoS silencing broke the intracellular calcium homeostasis, induced mitochondrial dynamic disorder, ROS accumulation, loss of ΔΨm and ATP, and triggered apoptosis and necrosis in mouse hepatoma cells. The clearance of ROS alleviated the loss of ΔΨm and ATP caused by silencing of SelenoS, reduced cell necrosis and increased apoptosis. However, SelenoS silencing did not cause ER stress in Hepa1-6 cells. These results indicate that SelenoS silencing triggers mouse hepatoma cells apoptosis and necrosis through affecting intracellular calcium homeostasis and ROS-mPTP-ATP participates in cell death transformation from apoptosis to necrosis to rise damage.  相似文献   

14.
We have demonstrated that the expressions of small molecular weight G-protein, H-Ras, and its effector protein, Raf-1, are increased in the retina in diabetes, and the specific inhibitors of Ras function inhibit glucose-induced apoptosis of retinal capillary cells. This study is to examine the contributory roles for H-Ras in glucose-induced apoptosis of retinal endothelial cells by genetic manipulation of functionally active H-Ras levels. Bovine retinal endothelial cells were transfected with the plasmids of either wild type (WT), constitutively active (V12) or dominant-negative (N17) H-Ras. Glucose-induced increase in apoptosis, nitric oxide (NO) levels and activation of NF-κB and caspase-3 were determined in these genetically manipulated cells. Exposure of bovine retinal endothelial cells to 20 mM glucose significantly increased H-Ras activation as determined by Raf-1 binding assay. Overexpression of V12 in the endothelial cells further increased their glucose-induced apoptosis by 40%, NO levels by about 50%, and activated NF-κB and caspase-3 by about 30–40% compared to the untransfected cells incubated in 20 mM glucose. In contrast, overexpression of the inactive mutant, N17, inhibited glucose-mediated increases in apoptotic cell death, NO levels and NF-κB and caspase-3 activation; the values were significantly different (p < 0.02) compared to those obtained from the untransfected cells incubated under similar conditions. Our findings demonstrate that H-Ras activation is important in the activation of the specific signaling events leading to the accelerated retinal capillary cell apoptosis in hyperglycemic conditions, suggesting the possible use of H-Ras inhibitors to inhibit the pathogenesis of diabetic retinopathy.  相似文献   

15.
Endothelial cell injury/dysfunction is considered to play a critical role in the pathogenesis of severe sepsis and septic shock. Although it is considered that endothelial cell apoptosis is involved in endothelial injury/dysfunction, physiological involvement remains ambiguous since the induction of apoptosis requires the inhibition of endogenous apoptosis inhibitors. Here we show that caspase-3 activation, a biological indicator of apoptosis, is observed in response to lipopolysaccharide (LPS) stimulation even under the influence of endogenous apoptosis inhibitors, and that activated caspase-3 is rapidly released from human umbilical vein endothelial cells (HUVEC). In the presence of cycloheximide (CHX), an increase in intracellular caspase-3/7 activity in response to LPS was not detected in HUVEC up to 24 h  following stimulation even in the presence of LPS-binding protein (LBP), soluble CD14 and soluble MD-2, whereas the decrease in cell viability and increase in release of the cellular enzyme lactate dehydrogenase (LDH) were observed in a soluble CD14/LBP-dependent manner. On the other hand, even in the absence of CHX, a significant increase in caspase-3/7 activity and a cleaved caspase-3 fragment with a slight increase in LDH release was observed in culture supernatants in response to LPS. This increase in caspase-3/7 activity was observed even when LDH release was undetected. These results indicate that caspase-3 is activated by LPS under physiological conditions and suggest that HUVEC escape from cell death by rapidly releasing activated caspase-3 into extracellular space. Failure of this escape mechanism may result in endothelial injury/dysfunction.  相似文献   

16.
Cd is an industrial and environmental pollutant that affects many organs in humans and other mammals. However, the molecular mechanisms of Cd-induced nephrotoxicity are unclear. In this study, we show that endoplasmic reticula (ER) played a pivotal role in Cd-induced apoptosis in mesangial cells. Using Fluo-3 AM, the intracellular concentration of calcium ([Ca2+]i) was detected as being elevated as time elapsed after Cd treatment. Co-treatment with BAPTA-AM, a calcium chelator, was able to significantly suppress Cd-induced apoptosis. Calcineurin is a cytosolic phosphatase, which was able to dephosphorylate the inositol-1,4,5-triphosphate receptor (IP3R) calcium channel to prevent the release of calcium from ER. Cyclosporine A, a calcineurin inhibitor, increased both [Ca2+]i and the percentage of Cd-induced apoptosis. However, EGTA and the IP3R inhibitor, 2-APB, were able to partially modulate Cd cytotoxicity. These results led us to suggest that the extracellular and ER-released calcium plays a crucial role in Cd-induced apoptosis in mesangial cells. Following this line, we further detected the ER stress after Cd treatment since ER is one of the major calcium storage organelles. After Cd exposure, GADD153, a hallmark of ER stress, was upregulated (at 4 h of exposure), followed by activation of ER-specific caspase-12 and its downstream molecule caspase-3 (at 16 h of exposure). The pan caspase inhibitor, Z-VAD, and BAPTA-AM were able to reverse the Cd-induced cell death and ER stress, respectively. Furthermore, the mitochondrial membrane potential (ΔΨm) was depolarized significantly and cytochrome c was released after 24 h of exposure to Cd and followed by mild activation of caspase-9 at the 36-h time point, indicating that mitochondria stress is a late event. Therefore, we concluded that ER is the major killer organelle in Cd-induced mesangial cell apoptosis and that calcium oscillation plays a pivotal role.  相似文献   

17.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   

18.
Calcium is a versatile and dynamic 2nd messenger that is essential for the survival of all higher organisms. In cells that undergo activation or excitation, calcium is released from the endoplasmic/sarcoplasmic reticulum to activate calcium-dependent kinases and phosphatases, thereby regulating numerous cellular processes; for example, apoptosis and autophagy. In the case of apoptosis, endogenous ligands or pharmacological agents induce prolonged cytosolic calcium elevation, which in turn leads to cell death. In contrast, there is now evidence that calcium regulates autophagy by several mechanisms, and these may be important for maintaining cell survival. Here we summarize what is known about how calcium regulates these life and death decisions. We pay particular attention to pathways that have been described in lymphocytes and cardiomyocytes, as these systems provide optimal models for understanding calcium signaling in the context of normal cell physiology.Apoptosis is a process of programmed cell death or suicide that occurs when cells have undergone irreversible stress or damage. It is required to maintain normal cell homeostasis or to eliminate a population of cells that may be harmful to the organism or unnecessary during organ development (Green 2003). For example, it is the primary mechanism by which potentially autoreactive T cells are eliminated from the immune system. There are two conventional apoptosis pathways: the extrinsic pathway, which is typically initiated by death receptors (e.g., Fas) on the plasma membrane and the intrinsic (mitochondrial) pathway, which involves permeabilization of the outer mitochondrial membrane followed by the release of cytochrome c. In this review, we primarily focus our attention on the intrinsic pathway due to the importance of intracellular calcium in the regulation of this process.In brief, cytochrome c release stimulates apoptosis via its interaction with the protein Apaf-1, which in turn activates the initiator caspase-9 and the executioner caspase-3 (Green 2005). Caspases comprise a family of cysteine proteases that are essential for the classically observed cellular and biochemical characteristics of apoptosis, which include (but are not limited to) membrane blebbing, chromatin condensation, and DNA fragmentation. Another class of cysteine proteases, calpains, require calcium for their activation and are important mediators of apoptosis following ER stress. As discussed later in this review, calpains are reported to directly activate caspases, thus promoting apoptotic cell death independent of mitochondrial cytochrome c release. The following sections provide a more detailed explanation of the varied ways in which calcium signals induce cell death and are themselves regulated.  相似文献   

19.
Asiatic acid (AA), a triterpene, is known to be cytotoxic to several tumor cell lines. AA induces dose- and time-dependent cell death in U-87 MG human glioblastoma. This cell death occurs via both apoptosis and necrosis. The effect of AA may be cell type-specific as AA-induced cell death was mainly apoptotic in colon cancer RKO cells. AA-induced glioblastoma cell death is associated with decreased mitochondrial membrane potential, activation of caspase-9 and -3, and increased intracellular free Ca2+. Although treatment of glioblastoma cells with the caspase inhibitor zVAD-fmk completely abolished AA-induced caspase activation, it did not significantly block AA-induced cell death. AA-induced cell death was significantly prevented by an intracellular Ca2+ inhibitor, BAPTA/AM. Taken together, these results indicate that AA induces cell death by both apoptosis and necrosis, with Ca2+-mediated necrotic cell death predominating.  相似文献   

20.
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号