首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
The sea hare Aplysia limacina possesses a myoglobin in which a distal H-bond is provided by Arg E10 rather than the common His E7. Solution (1)H NMR studies of the cyanomet complexes of true wild-type (WT), recombinant wild-type (rWT), and the V(E7)H/R(E10)T and V(E7)H mutants of Aplysia Mb designed to mimic the mammalian Mb heme pocket reveal that the distal His in the mutants is rotated out of the heme pocket and is unable to provide a stabilizing H-bond to bound ligand and that WT and rWT differ both in the thermodynamics of heme orientational disorder and in heme contact shift pattern. The mean of the four heme methyl shifts is shown to serve as a sensitive indicator of variations in distal H-bonding among a set of mutant cyanomet globins. The heme pocket perturbations in rWT relative to WT were traced to the absence of the N-terminal acetyl group in rWT that participates in an H-bond to the EF corner in WT. Analysis of dipolar contacts between heme and axial His and between heme and the protein matrix reveal a small approximately 2 degrees rotation of the axial His in rWT relative to true WT and a approximately 3 degrees rotation of the heme in the double mutant relative to rWT Mb. It is demonstrated that both the direction and magnitude of the rotation of the axial His relative to the heme can be determined from the change in the pattern of the contact-dominated heme methyl shift and from the dipolar-dominated heme meso-H shift. However, only NOE data can determine whether it is the His or heme that actually rotates in the protein matrix.  相似文献   

3.
The solution electronic and molecular structure for the heme pocket of the cyanomet complex of the isolated alpha-chain of human adult hemoglobin (HbA) has been investigated by homonuclear two-dimensional 1H NMR in order to establish an assignment protocol for the dimeric chain that will guide similar assignments in the intact, heterotetrameric HbA complex, and to compare the structures of the alpha-chain with its subunit in HbA. The target residues are those that exhibit significant (>0.2 ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 97 target residues (approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than 0.2 ppm. The complete assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the alpha-chain in terms of the crystal coordinates of the alpha-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated alpha-chain relative to that in the intact HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in HbACO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature two-dimensional NMR spectra are crucial to effective assignments in the cyanomet alpha-chain and that this approach should be similarly effective in HbA.  相似文献   

4.
1. Ascaris suum extracellular hemoglobin is composed of eight identical single polypeptide chain subunits carrying two heme binding sites each. 2. Limited trypsinolysis followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis gave a major band corresponding to half the molecular mass of an intact subunit. 3. Peptide mapping of tryptic hydrolysates yielded 27 to 30 fluorescamine positive spots, about half the number of lysyl and arginyl residues in a polypeptide chain. 4. The findings indicate that a subunit of Ascaris hemoglobin consists of two structural units of roughly equal size, corresponding to two recurring sequences, connected together by the continuity of the polypeptide chain.  相似文献   

5.
The solution molecular and electronic structures of the active site in the extremely O2-avid hemoglobin from the trematode Paramphistomum epiclitum have been investigated by 1H NMR on the cyanomet form in order to elucidate the distal hydrogen-bonding to a ligated H-bond acceptor ligand. Comparison of the strengths of dipolar interactions in solution with the alternate crystal structures of methemoglobin establish that the solution structure of wild-type Hb more closely resembles the crystal structure of the recombinant wild-type than the true wild-type met-hemoglobin. The distal Tyr66(E7) is found oriented out of the heme pocket in solution as found in both crystal structures. Analysis of dipolar contacts, dipolar shift and paramagnetic relaxation establishes that the Tyr32(B10) hydrogen proton adopts an orientation that allows it to make a strong H-bond to the bound cyanide. The observation of a significant isotope effect on the heme methyl contact shifts confirms a strong contact between the Tyr32(B10) OH and the ligated cyanide. The quantitative determination of the orientation and anisotropies of the paramagnetic susceptibility tensor reveal that the cyanide is tilted approximately 10 degrees from the heme normal so as to avoid van der Waals overlap with the Tyr32(B10) Oeta. The pattern of heme contact shifts with large low-field shifts for 7-CH3 and 18-CH3 is shown to arise not from the 180 degrees rotation about the alpha-gamma-meso axis, but due to the approximately 45 degrees rotation of the axial His imidazole ring, relative to that in mammalian globins.  相似文献   

6.
The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA.  相似文献   

7.
Sequence-specific 2D methodology has been used to assign the 1H NMR signals for all active site residues in the paramagnetic cyano-met complexes of sperm whale synthetic double mutant His64[E7]-->Val/Thr67[E10]-->Arg (VR-met-MbCN) and triple mutant His64[E7]-->Val/Thr67[E10]-->Arg/Arg45[CD3]-->Asn (VRN-metMbCN). The resulting dipolar shifts for noncoordinated proximal side residues were used to quantitatively determine the orientation of the paramagnetic susceptibility tensor in the molecular framework for the two mutants, which were found indistinguishable but distinct from those of both wild-type and the His64[E7]-->Val single point mutant (V-metMbCN). The observed dipolar shifts for the E helix backbone protons and Phe43[CD1], together with steady-state nuclear Overhauser effect between the E helix and the heme, were analyzed to show that both the E helix and Phe43[CD1] move slightly closer to the iron to minimize the vacancy resulting from the His64[E7]-->Val substitution, as found in V-metMbCN (Rajarathnam, K., J. Qin, G.N. LaMar, M. L. Chiu, and S. G. Sligar. 1993. Biochemistry. 32:5670-5680). The dipolar shifts of the mutated Val64[E7] and Arg67[E10] allow the determination of their orientations relative to the heme, and the latter residue is shown to insert into the pocket and provide a hydrogen bond to the coordinated ligand, as found in the naturally occurring ValE7/ArgE10 genetic variant, Aplysia limacina Mb. The oxy-complex of both A. limacina Mb and VR-Mb, VRN-Mb have been proposed to be stabilized by this hydrogen bonding interaction (Travaglini Allocatelli, C. et al. 1993. Biochemistry. 32:6041-6049). The magnitude of the tilt of the major magnetic axes from the heme normal in VR-metMbCN and VRN-metMbCN, which is related to the tilt of the ligand, is the same as in wild-type or V-metMbCN, but the direction of tilt is altered from that in V-metMbCN. It is concluded that the change in the direction of the ligand tilt in both the double and triple mutants, as compared to WT metMbCN and V-metMbCN single mutant, is due to the attractive hydrogen-bonding between ArgE10 and the bound cyanide.  相似文献   

8.
The arrangement of subunits and molecular symmetry of extracellular hemoglobin from the nematode Ascaris suum, an 11.7S molecular of molecular mass 332 kDa and composed of eight identical subunits, was studied. Dissociation of the molecule at alkaline and acid pH yielded 4.6S and 2.7S components, identified as polypeptide-chain dimers and monomers, respectively. Cross-linking with glutardialdehyde followed by SDS/PAGE resulted in a maximum number of eight bands identified in order of decreasing mobility as monomeric and 2-8 cross-linked-polypeptide-chain species. Comparison with values predicted from theory shows that the distribution of protein among the various cross-linked species, obtained after different extents of exposure to cross-linker, is consistent with a two-layered arrangement of subunits involving one type of interaction between subunits from different layers and another between subunits within the same layer. Electron micrographs of the molecule showed two profiles, a square and a rectangle. We propose a model for the molecule which is eight subunits arranged in two layers, stacked in an eclipsed orientation. The proposed model is consistent with the results from sedimentation, cross-linking and electron microscopy. Taken together, our findings indicate D4 symmetry for Ascaris hemoglobin.  相似文献   

9.
Benzyloxycarbonyl (Z)-Ala-Pro-Phe-glyoxal and Z-Ala-Ala-Phe-glyoxal have both been shown to be inhibitors of alpha-chymotrypsin with minimal Ki values of 19 and 344 nM, respectively, at neutral pH. These Ki values increased at low and high pH with pKa values of approximately 4.0 and approximately 10.5, respectively. By using surface plasmon resonance, we show that the apparent association rate constant for Z-Ala-Pro-Phe-glyoxal is much lower than the value expected for a diffusion-controlled reaction. 13C NMR has been used to show that at low pH the glyoxal keto carbon is sp3-hybridized with a chemical shift of approximately 100.7 ppm and that the aldehyde carbon is hydrated with a chemical shift of approximately 91.6 ppm. The signal at approximately 100.7 ppm is assigned to the hemiketal formed between the hydroxy group of serine 195 and the keto carbon of the glyoxal. In a slow exchange process controlled by a pKa of approximately 4.5, the aldehyde carbon dehydrates to give a signal at approximately 205.5 ppm and the hemiketal forms an oxyanion at approximately 107.0 ppm. At higher pH, the re-hydration of the glyoxal aldehyde carbon leads to the signal at 107 ppm being replaced by a signal at 104 ppm (pKa approximately 9.2). On binding either Z-Ala-Pro-Phe-glyoxal or Z-Ala-Ala-Phe-glyoxal to alpha-chymotrypsin at 4 and 25 degrees C, 1H NMR is used to show that the binding of these glyoxal inhibitors raises the pKa value of the imidazolium ion of histidine 57 to a value of >11 at both 4 and 25 degrees C. We discuss the mechanistic significance of these results, and we propose that it is ligand binding that raises the pKa value of the imidazolium ring of histidine 57 allowing it to enhance the nucleophilicity of the hydroxy group of the active site serine 195 and lower the pKa value of the oxyanion forming a zwitterionic tetrahedral intermediate during catalysis.  相似文献   

10.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

11.
Functional and structural studies on hemoglobin and myoglobin from different animals and engineered variants have enlightened the great importance of the physico-chemical properties of the side-chains at topological position B10 and E7. These residues proved to be crucial to the discrimination and stabilisation of gaseous ligands. In view of the data obtained on the high oxygen affinity hemoglobin from Ascaris worms and a new mutant of sperm whale myoglobin, we selected the two mutations Leu B10-->Tyr and His E7-->Gln as potentially relevant to control ligand binding parameters in the alpha and beta-chains of human hemoglobin. Here, we present an investigation of three new mutants: HbalphaYQ (alpha2YQbeta2A), HbbetaYQ (alpha2Abeta2YQ) and HbalphabetaYQ (alpha2YQbeta2YQ). They are characterised by a very low reactivity for NO, O2 and CO, and a reduced cooperativity. Their functional properties are not inconsistent with the behaviour expected for a two-state allosteric model. Proteins with these substitutions may be considered as candidates for the synthesis of a possible "blood substitute", which should yield an O2 adduct stable to autoxidation and slowly reacting with NO. The mutant HbalphabetaYQ is particularly interesting because the rate of reaction of NO with the oxy and deoxy derivatives is reduced. A structural interpretation of our data is presented based on the 3D structure of deoxy HbalphabetaYQ determined by crystallography at 1.8 A resolution.  相似文献   

12.
Parasites have developed a variety of physiological functions necessary for existence within the specialized environment of the host. Regarding energy metabolism, which is an essential factor for survival, parasites adapt to low oxygen tension in host mammals using metabolic systems that are very different from that of the host. The majority of parasites do not use the oxygen available within the host, but employ systems other than oxidative phosphorylation for ATP synthesis. In addition, all parasites have a life cycle. In many cases, the parasite employs aerobic metabolism during their free-living stage outside the host. In such systems, parasite mitochondria play diverse roles. In particular, marked changes in the morphology and components of the mitochondria during the life cycle are very interesting elements of biological processes such as developmental control and environmental adaptation. Recent research has shown that the mitochondrial complex II plays an important role in the anaerobic energy metabolism of parasites inhabiting hosts, by acting as quinol-fumarate reductase.  相似文献   

13.
Both 1H NMR and circular dichroism pH titration studies on histidine, His-Gly, Gly-His and Gly-His-Gly indicate that the side-chain spatial orientation depends strongly on the vicinal charges. The arrangement of the imidazole side-chain (rotamer population) is shown by the histidine beta and beta' and the glycine methylene proton chemical shifts as well as the vicinal 1H-1H coupling constants 3JCalpha-H-beta-H, beta'-H. For His-Gly and Gly-His-Gly a good correlation can be found between the ionization of the glycine COOH group and the increase of rotamer III (g-g) which is also visualized by circular dichroism through an enhancement of the ellipticity at 212 nm. In these two peptides a hydrogen bond between the imidazolium and the carboxylate group is supposed to stabilize rotamer III at pH 4-5.  相似文献   

14.
The hydrogen-bond network in mono-altro-beta-cyclodextrin and in its inclusion complex with adamantane-1-carboxylic acid were investigated by (1)H NMR spectroscopy using the chemical shifts, temperature coefficients and vicinal coupling constants of the exchangeable hydroxy protons. The chemical shifts of the 3-OH signals indicated that the hydrogen-bond network between the 2-OH and 3-OH groups was disturbed not only on each side of the altrose residue, but also along the whole dextrin chain. Upon addition of adamantane-1-carboxylic acid, altrose underwent a conformational change from the (1)C(4) to the (O)S(2) form, allowing a more continuous belt of hydrogen bonding, as evidenced by the downfield shift experienced by the 3-OH proton signals of the glucose residues.  相似文献   

15.
16.
We have used microspectrofluorimetry to measure the rate of DNA synthesis in the first two embryonic cell cycles of the parasitic nematode Ascaris suum. The S-phase of the early Ascaris cell cycles occupies at most 1 hr; G2 phase is prominent and occupies approximately 11 hr; no G1 phase could be detected. These results contrast with our previous measurements made with embryos of the free-living nematode Caenorhabditis elegans, in which the earliest cell cycles consist of simple alternations between S and M phases.  相似文献   

17.
Novel 1H nuclear magnetic resonance (NMR) resonances, arising from exchangeable protons and centered at approximately 11.2 and 10.1 parts per million (ppm), have been observed in the low-field spectrum (10-15 ppm) of the chicken erythrocyte core particle [145 +/- 2 base pairs (bp)]. These peaks are located upfield from the normal adenine-thymine (A-T) and guanine-cytosine (G-C) imino peaks characteristic of B-form deoxyribonucleic acid (DNA) and are not observed in free DNA under identical conditions. The appearance of the new peaks is ionic strength dependent and temperature-reversible below 75 degrees C. At 25 degrees C, the upfield peak area represents 5% of the DNA base pairs (7 bp), while between 45 and 55 degrees C, the area increases to 18%, affecting approximately 25 bp. Area increases in the upfield resonances result in a complementary decrease in the A-T and G-C imino peaks found between 12 and 14 ppm. We believe these novel proton signals represent a histone-induced DNA conformational change which involves localized alteration of base pairing in the core particle.  相似文献   

18.
19.
The morphology and behaviour of sex chromosomes was studied in A. suum during meiosis. It was found that the five sex chromosomes have their proper characteristic. The largest is submetacentric, of 2 microns mean length. The second largest is acrocentric, mean length of 1.4 mu. The third largest is metacentric, 1.2 mu mean length. The fourth and the fifth are metacentric, of mean length of 1 mu. In primary and secondary spermatocyte cells the sex chromosomes are close to each other, most often in the peripheral part of the cell. During anaphase I the pentad sex chromosomes lie freely between the two sister cells. It is assumed that in anaphase II the five sex chromosomes divide equally and are regularly distributed in the daughter cells. It was found that the chromosomes set of female Ascaris in metaphase I contains 24 bivalent chromosomes n = 24 and of male Ascaris 19 bivalents and 5 univalents. It is assumed that the univalent chromosomes, found in spermatocyte cells, determine sex.  相似文献   

20.
We report an unusually high frequency (543 cm(-)(1)) for an Fe-CO stretching mode in the CO complex of Ascaris suum hemoglobin as compared to vertebrate hemoglobins in which the frequency of the Fe-CO mode is much lower. A second Fe-CO stretching mode in Ascaris hemoglobin is observed at 515 cm(-1). We propose that these two Fe-CO stretching modes arise from two protein conformers corresponding to interactions of the heme-bound CO with the B10-tyrosine or the E7-glutamine residues. This postulate is supported by spectra from the B10-Tyr --> Phe mutant in which the 543 cm(-1) line is absent. Thus, a strong polar interaction, such as hydrogen bonding, of the CO with the distal B10 tyrosine residue is the dominant factor that causes this anomalously high frequency. Strong hydrogen bonding between O(2) and distal residues in the oxy complex of Ascaris hemoglobin has been shown to result in a rigid structure, rendering an extremely low oxygen off rate [Gibson, Q. H., and Smith, M. H. (1965) Proc. R. Soc. London B 163, 206-214]. In contrast, the CO off rate in Ascaris hemoglobin is very similar to that in sperm whale myoglobin. The high CO off rate relative to that of O(2) in Ascaris hemoglobin is attributed to a rapid equilibrium between the two conformations of the protein in the CO adduct, with the off rate being determined by the conformer with the higher rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号