首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
The stereotyped pattern of Drosophila wing veins is determined by the action of two morphogens, Hedgehog (Hh) and Decapentaplegic (Dpp), which act sequentially to organize growth and patterning along the anterior-posterior axis of the wing primordium. An important unresolved question is how positional information established by these morphogen gradients is translated into localized development of morphological structures such as wing veins in precise locations. In the current study, we examine the mechanism by which two broadly expressed Dpp signaling target genes, optomotor-blind (omb) and brinker (brk), collaborate to initiate formation of the fifth longitudinal (L5) wing vein. omb is broadly expressed at the center of the wing disc in a pattern complementary to that of brk, which is expressed in the lateral regions of the disc and represses omb expression. We show that a border between omb and brk expression domains is necessary and sufficient for inducing L5 development in the posterior regions. Mosaic analysis indicates that brk-expressing cells produce a short-range signal that can induce vein formation in adjacent omb-expressing cells. This induction of the L5 primordium is mediated by abrupt, which is expressed in a narrow stripe of cells along the brk/omb border and plays a key role in organizing gene expression in the L5 primordium. Similarly, in the anterior region of the wing, brk helps define the position of the L2 vein in combination with another Dpp target gene, spalt. The similar mechanisms responsible for the induction of L5 and L2 development reveal how boundaries set by dosage-sensitive responses to a long-range morphogen specify distinct vein fates at precise locations.  相似文献   

12.
13.
14.
Quantitative data from the Drosophila wing imaginal disc reveals that the amplitude of the Decapentaplegic (Dpp) morphogen gradient increases continuously. It is an open question how cells can determine their relative position within a domain based on a continuously increasing gradient. Here we show that pre-steady state diffusion-based dispersal of morphogens results in a zone within the growing domain where the concentration remains constant over the patterning period. The position of the zone that is predicted based on quantitative data for the Dpp morphogen corresponds to where the Dpp-dependent gene expression boundaries of spalt (sal) and daughters against dpp (dad) emerge. The model also suggests that genes that are scaling and are expressed at lateral positions are either under the control of a different read-out mechanism or under the control of a different morphogen. The patterning mechanism explains the extraordinary robustness that is observed for variations in Dpp production, and offers an explanation for the dual role of Dpp in controlling patterning and growth. Pre-steady-state dynamics are pervasive in morphogen-controlled systems, thus making this a probable general mechanism for the scaled read-out of morphogen gradients in growing developmental systems.  相似文献   

15.
16.
Morphogen control of wing growth through the Fat signaling pathway   总被引:1,自引:0,他引:1  
Organ growth is influenced by organ patterning, but the molecular mechanisms that link patterning to growth have remained unclear. We show that the Dpp morphogen gradient in the Drosophila wing influences growth by modulating the activity of the Fat signaling pathway. Dpp signaling regulates the expression and localization of Fat pathway components, and Fat signaling through Dachs is required for the effect of the Dpp gradient on cell proliferation. Juxtaposition of cells that express different levels of the Fat pathway regulators four-jointed and dachsous stimulates expression of Fat/Hippo pathway target genes and cell proliferation, consistent with the hypothesis that the graded expression of these genes contributes to wing growth. Moreover, uniform expression of four-jointed and dachsous in the wing inhibits cell proliferation. These observations identify Fat as a signaling pathway that links the morphogen-mediated establishment of gradients of positional values across developing organs to the regulation of organ growth.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号