首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A single infusion of Escherichia coli endotoxin into sheep results in structural evidence of pulmonary endothelial injury, increases in both prostacyclin and prostaglandin E2 (PGE2) in lung lymph, and an increase in pulmonary microvascular permeability. Endotoxin-induced lung endothelial damage can also be induced in vitro, but to date these studies have utilized endothelium from large pulmonary vessels. In the present study, we have grown endothelial cells from peripheral lung vessels of cows and sheep and exposed these microvascular endothelial cells to endotoxin. Controls included lung microvascular endothelium without endotoxin and endothelial cells from bovine and sheep main pulmonary artery with and without addition of endotoxin. We found that endotoxin caused significant increases in release of prostacyclin and PGE2 from both bovine and sheep lung microvascular and pulmonary artery endothelium. Normal bovine and sheep pulmonary artery and bovine lung microvascular endothelium released greater levels of prostacyclin than PGE2 (ng/ng); release of PGE2 from the microvascular cells was greater than from the pulmonary artery endothelium in both species. Exposure of endothelial cells from cow and sheep main pulmonary artery to endotoxin results in endothelial cell retraction and pyknosis, a loss of barrier function, increased release of prostacyclin and PGE2 and eventual cell lysis. In lung microvascular cells, the increases in prostanoids were accompanied by changes in cell shape but occurred in the absence of either detectable alterations in barrier function or cytolysis. Thus, while endotoxin causes alterations to endothelial cells from both large and small pulmonary vessels, the effects are not identical suggesting site specific phenotypic expression of endothelial cells even within a single vessel. To determine whether the response of either the large or small pulmonary vessel endothelial cells in culture mimics most closely the in vivo response of the lung to endotoxin requires further study.  相似文献   

2.
Administration of lymphokine-activated killer (LAK) cells in combination with interleukin 2 (IL-2) has been effective in reducing tumor mass in humans, but has been accompanied by significant toxicity. We used a chronic awake sheep model to investigate the cause of the vascular leak syndrome associated with IL-2 administration. Sheep repeatedly infused with human recombinant IL-2 (hrIL-2) developed mild pulmonary hypertension, systemic hypotension, acidemia, hypoxemia, and increased flow of protein rich lung lymph. We hypothesized that LAK cells may damage lung endothelium in vivo and cause increased lung vascular permeability. Sheep peripheral blood and lung lymph lymphocytes incubated in vitro with hrIL-2 generated cytotoxic activity for human K-562 cells and sheep pulmonary microvascular endothelial cells. In addition, cytotoxic effector cells were isolated from the peripheral blood of a sheep which had received hrIL-2. These observations suggest that LAK cells possess the ability to damage endothelial cells and may contribute to an increased pulmonary vascular permeability observed following hrIL-2 infusion in sheep.  相似文献   

3.
For many years, molecular interactions with vascular endothelium have been studied in vitro on cultured endothelial cells. Yet, it is clear that the different environmental conditions in vivo vs. in vitro may cause phenotypic drift and altered expression of cell surface molecules. In this study, we identify several endothelial surface proteins of similar apparent molecular mass by radioiodination of cultured microvascular cells and by intravascular radioiodination of rat heart endothelium in situ. The radioiodinated surface polypeptides detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (followed by autoradiography) were subjected to lectin affinity chromatography in order to provide an additional screen for identifying common surface glycoproteins and a means for partial characterization of their glycans. With a battery of 18 lectins, seven major (gp140, gp120, gp100, gp85, gp75, gp60, gp47) and 6 minor (gp330, gp300, gp180, gp160, gp150, gp42) glycoproteins were identified on the cultured cells each with a different lectin binding profile. The lectin binding profiles of many endothelial glycoproteins in situ were similar to those of their counterparts in culture. A common set of seven major glycoproteins with the same apparent molecular masses was found in situ as well as in vitro. These common glycoproteins were characterized further using both sialidase digestion and sequential lectin affinity chromatography of cell lysates. Most of the glycoproteins appear to have both complex-type N-linked and O-linked glycans except for gp60 with only O-linked glycans, gp47 with only complex N-linked sugars, and gp42 with only simple N-linked sugars. A subset of sialoglycoproteins (gp140, gp120, gp100, gp60, gp47) was identified. One of them, gp120, is podocalyxin based on immunoprecipitation with specific antiserum and another one, gp60, is a recently identified albumin binding protein on the surface of cultured microvascular endothelial cells. This study shows that gp60 is indeed present on the surface of endothelium in situ and that it is a sialoglycoprotein with typical O-linked glycans. It is apparent that the continuous type of microvascular endothelium can indeed express in culture and in situ a common set of major glycoproteins.  相似文献   

4.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

5.
We studied the kinetics of hepatic uptake of liposomes during serum-free recirculating perfusion of rat livers. Liposomes consisted of phosphatidylcholine, cholesterol and phosphatidylserine in a 6:4:0 or a 3:4:3 molar ratio and were radiolabelled with [3H]cholesteryl oleyl ether. The negatively charged liposomes were taken up to a 10-fold higher extent than the neutral ones. Hepatic uptake of fluorescently labelled liposomes was examined by fluorescence microscopy. The neutral liposomes displayed a typical Kupffer cell distribution pattern, in addition to weak diffuse staining of the parenchyma, while the negatively charged liposomes showed a characteristic sinusoidal lining pattern, consistent with an endothelial localization. In addition, scattered Kupffer cell staining was distinguished as well as diffuse parenchymal fluorescence. The mainly endothelial localisation of the negatively charged liposomes was confirmed by determining radioactivity in endothelial and Kupffer cells isolated following a 1-h perfusion. Perfusion in the presence of polyinosinic acid, an inhibitor of scavenger receptor activity, reduced the rate of uptake of the negatively charged liposomes twofold, indicating the involvement of this receptor in the elimination mechanism. These results are compatible with earlier in vitro studies on liposome uptake by isolated endothelial cells and Kupffer cells, which showed that in the absence of serum also endothelial cells in situ are able to take up massive amounts of negatively charged liposomes. The present results emphasize that the high in vitro endothelial cell uptake in the absence of serum from earlier observations was not an artifact induced by the cell isolation procedure.  相似文献   

6.
Rüffer C  Strey A  Janning A  Kim KS  Gerke V 《Biochemistry》2004,43(18):5360-5369
Endothelial cell-cell contacts control the vascular permeability, thereby regulating the flow of solutes, macromolecules, and leukocytes between blood vessels and interstitial space. Because of specific needs, the endothelial permeability differs significantly between the tight blood-brain barrier endothelium and the more permeable endothelial lining of the non-brain microvasculature. Most likely, such differences are due to a differing architecture of the respective interendothelial cell contacts. However, while the molecules and junctional complexes of macrovascular endothelial cells and the blood-brain barrier endothelium are fairly well characterized, much less is known about the organization of intercellular contacts of microvascular endothelium. Toward this end, we developed a combined cross-linking and immunoprecipitation protocol which enabled us to map nearest neighbor interactions of junctional proteins in the human dermal microvascular endothelial cell line HMEC-1. We show that proteins typically located in tight or adherens junctions of epithelial cells are in the proximity in HMEC-1 cells. This contrasts with the separation of the different types of junctions observed in polarized epithelial cells and "tight" endothelial layers of the blood-brain barrier and argues for a need of the specific junctional contacts in microvascular endothelium possibly required to support an efficient transendothelial migration of leukocytes.  相似文献   

7.
Murine endothelial cells (ECs) have proven difficult to obtain and maintain in culture. Long-term maintenance of normal ECs remains a difficult task. In this article we report the establishment of the first cellular line of renal microvascular endothelium obtained from normal tissue. Cells were isolated, cloned, and maintained by serial passages for longer than 24 mo, using endothelial cell growth supplement (ECGS) and gelatin-coated plates. Their morphology and ultrastructure, expression of von Willebrand factor, presence of smooth muscle alpha-actin, vimentin, cytokeratin filaments, capillary structures formed on Matrigel, and some typical ECs surface molecules were the criteria used to characterize cultured ECs. When examined for responsiveness to Shiga toxin-1, 13-20% of cytotoxicity was observed when coincubated with lipopolysaccharides. This cytotoxicity was not observed for normal lung ECs (1G11). Consequently, REC-A4 line retains characteristics of resting microvascular ECs and represents a useful in vitro model to study biological and physiopathological properties of renal endothelium.  相似文献   

8.
9.
Pulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus we hypothesized that there are genes for which expression is altered selectively in the lung in response to alveolar hypoxia. Using a novel subtractive array strategy, we compared gene responses to hypoxia in primary human pulmonary microvascular endothelial cells (HMVEC-L) with those in cardiac microvascular endothelium and identified 90 genes (forming 9 clusters) differentially regulated in the lung endothelium. From one cluster, we confirmed that the bone morphogenetic protein (BMP) antagonist, gremlin 1, was upregulated in the hypoxic murine lung in vivo but was unchanged in five systemic organs. We also demonstrated that gremlin protein was significantly increased by hypoxia in vivo and inhibited HMVEC-L responses to BMP stimulation in vitro. Furthermore, significant upregulation of gremlin was measured in lungs of patients with pulmonary hypertensive disease. From a second cluster, we showed that CXC receptor 7, a receptor for the proangiogenic chemokine CXCL12, was selectively upregulated in the hypoxic lung in vivo, confirming that our subtractive strategy had successfully identified a second lung-selective hypoxia-responsive gene. We conclude that hypoxia, typical of that encountered in pulmonary disease, causes lung-specific alterations in gene expression. This gives new insights into the mechanisms of pulmonary hypertension and vascular loss in chronic lung disease and identifies gremlin 1 as a potentially important mediator of vascular changes in hypoxic pulmonary hypertension.  相似文献   

10.
《The Journal of cell biology》1994,127(5):1217-1232
Caveolae or noncoated plasmalemmal vesicles found in a variety of cells have been implicated in a number of important cellular functions including endocytosis, transcytosis, and potocytosis. Their function in transport across endothelium has been especially controversial, at least in part because there has not been any way to selectively inhibit this putative pathway. We now show that the ability of sterol binding agents such as filipin to disassemble endothelial noncoated but not coated plasmalemmal vesicles selectively inhibits caveolae-mediated intracellular and transcellular transport of select macromolecules in endothelium. Filipin significantly reduces the transcellular transport of insulin and albumin across cultured endothelial cell monolayers. Rat lung microvascular permeability to albumin in situ is significantly decreased after filipin perfusion. Conversely, paracellular transport of the small solute inulin is not inhibited in vitro or in situ. In addition, we show that caveolae mediate the scavenger endocytosis of conformationally modified albumins for delivery to endosomes and lysosomes for degradation. This intracellular transport is inhibited by filipin both in vitro and in situ. Other sterol binding agents including nystatin and digitonin also inhibit this degradative process. Conversely, the endocytosis and degradation of activated alpha 2- macroglobulin, a known ligand of the clathrin-dependent pathway, is not affected. Interestingly, filipin appears to inhibit insulin uptake by endothelium for transcytosis, a caveolae-mediated process, but not endocytosis for degradation, apparently mediated by the clathrin-coated pathway. Such selective inhibition of caveolae not only provides critical evidence for the role of caveolae in the intracellular and transcellular transport of select macromolecules in endothelium but also may be useful for distinguishing transport mediated by coated versus noncoated vesicles.  相似文献   

11.
DNA complexes made with cationic polymers (polyplexes) developed as nonviral vectors for gene therapy must be enabled to cross through vascular endothelium to transfect underlying tissues upon their administration in the blood circulation. Here, we evaluated the transendothelial passage (TEP) of DNA complexes made with histidinylated linear polyethylenimine (His-lPEI) or linear polyethylenimine (lPEI). In vitro studies were performed by using established transwell lung and skeletal muscle vascular endothelial barriers. The models were composed of a monolayer of human lung microvascular endothelial (HMVEC-L) cells and mouse cardiac endothelial (MCEC) cells formed on a PET insert and immortalized human tracheal epithelial (ΣCFTE29o-) cells and mouse myoblasts (C2C12) as target cells cultured in the lower chamber, respectively. When the vascular endothelium monolayer was established and characterized, the transfection efficiency of target (ΣCFTE29o- and C2C12) cells with plasmid DNA encoding luciferase was used to evaluate TEP of polyplexes. The luciferase activities with His-lPEI and lPEI polyplexes compared to those obtained in the absence of endothelial cell monolayer were 6.5% and 4.3% into ΣCFTE29o- cells, and 18.5% and 0.23% into C2C12 cells, respectively. The estimated rate for His-lPEI polyplexes was 0.135 μg/cm2.h and 0.385 μg/cm2.h through the HMVEC-L and MCEC monolayers, respectively. These results indicate that His-lPEI polyplexes can pass through the lung and skeletal muscle vascular endothelium and can transfect underlying cells.  相似文献   

12.
Vascular endothelium has attracted extensive attention due to its important role in many physiological and pathological processes. Many methods have been developed to study the components and their functions in vascular endothelium. Here we report a novel approach to investigate vascular endothelium using normal rat lungs as the model. We perfused lung vascular beds with sulfosuccinimidyl-6-(biotinamido) hexanoate, a biotin analog, to label endothelial membrane proteins. The biotinylated proteins were isolated from lung homogenate with immobilized monomeric avidin and confirmed to be highly pure endothelial membrane proteins with little contamination of intracellular proteins. These biotinylated proteins were used as immunogens for development of monoclonal antibodies. Indeed, newly generated monoclonal antibodies have revealed different expression patterns of proteins across tissues. Some proteins were found highly specifically expressed to capillary vessels of pulmonary vasculature. This method has also been proven useful for investigating vasculature of other organs, as this study explored. vascular endothelium; biotinylation; tissue specific; monoclonal antibodies  相似文献   

13.
We test the hypothesis that microvascular endothelial cells may undergo apoptosis in response to acute pulmonary venous hypertension. The isolated rabbit lungs were perfused in situ for 4 h with left atrial pressure of 0, 10, or 20 mmHg at a constant blood flow. Edema formation was monitored by lung weight gain. To assay for apoptosis, we performed agarose gel electrophoresis of DNA, in situ nick end labeling of DNA strand breaks, and electron microscopy. We also examined the levels of expression of Bcl-2, a suppressor of apoptosis, in microvascular endothelial cells using an immunohistochemical technique. In a vascular pressure-dependent fashion, we found apoptosis in endothelial cells of alveolar septal capillaries, as well as expression of Bcl-2 in arteriolar and venular endothelial cells. We conclude that acute pulmonary venous hypertension induces apoptosis in capillary endothelial cells but not in arteriolar and venular endothelial cells, suggesting that microvascular endothelial cell apoptosis is dependent on the levels of Bcl-2 expression and influences the formation or resolution of acute hydrostatic lung edema.  相似文献   

14.
The tyrosine kinase Tie2/Tek (the receptor for angiopoietins) is considered one of the most reliable markers of the endothelial phenotype, across organisms, organs, and developmental stages. However, endothelium is intrinsically heterogeneous in origin, composition and function, presenting an arteriolar/venular asymmetry. In this regard, the expression of Tie2 along the vascular tree, although thought to be homogenous, has not been systematically investigated. Therefore we questioned whether the activity of Tie2 promoter is uniform in the microvascular endothelium. To this end, we analyzed in situ the expression of the markers beta-galactosidase [LacZ(Tie2)] and green fluorescent protein (GFP) [GFP(Tie2)], placed under the Tie2 promoter in transgenic mice, in whole mount tissue samples, which allow the simultaneous evaluation of its relative distribution in various microvascular compartments. In the mesenteries of LacZ(Tie2) and GFP(Tie2) mice, we found that the activity of Tie2 promoter is asymmetrically distributed, being much stronger in arteries and arterioles than on the venular side of the vascular tree. This observation was replicated in the diaphragm of LacZ(Tie2) mice. The capillaries presented a mosaic pattern of Tie2 promoter activity. Stimulation of angiogenesis either by wounding, or by intraperitoneal injection of Vascular Endothelial Growth Factor (VEGF), revealed that the arteriolar/venular asymmetry is established at endothelial cellular level early during new capillary formation, even before the starting of the microvascular blood flow. In conclusion, a strong Tie2 promoter activity qualifies as a novel marker of the arteriolar phenotype in microvascular endothelium.  相似文献   

15.
16.
17.
18.
In vivo models of airway inflammation suggest that most protein transudation occurs from bronchial microcirculation. However, due to technical limitations in the isolation and culture of bronchial endothelial cells, most studies of lung vascular permeability have focused on pulmonary endothelium. Thus conditions for culture of sheep bronchial artery endothelial cells (BAEC) and bronchial microvascular endothelial cells (BMVEC) were established. The bronchial artery and the mainstem bronchi, stripped of epithelium, were dissected, and endothelial cells were isolated by enzymatic treatment. BAEC and BMVEC demonstrated positive staining for factor VIII-related antigen, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-labeled low-density lipoprotein, and PECAM-1. Radioligand binding studies confirmed equivalent numbers of bradykinin B(2) receptors on BAEC and BMVEC. Permeability of BAEC and BMVEC was determined after treatment with bradykinin and thrombin by comparing the translocation of FITC-dextran (mol wt 9,500) across confluent monolayers (n = 10-12). Bradykinin caused a maximal increase in permeability in BAEC (165% increase) and BMVEC (144% increase) by 15 min compared with vehicle controls. Thrombin treatment altered BMVEC permeability only, reaching a maximal response at 60 min (109% increase). These results demonstrate bronchial endothelial cell heterogeneity and establish methods to determine intracellular mechanisms contributing to airway disease in relevant cell systems.  相似文献   

19.
Endothelial cells can function differently in vitro and in vivo; however, the degree of microenvironmental modulation in vivo remains unknown at the molecular level largely because of analytical limitations. We use multidimensional protein identification technology (MudPIT) to identify 450 proteins (with three or more spectra) in luminal endothelial cell plasma membranes isolated from rat lungs and from cultured rat lung microvascular endothelial cells. Forty-one percent of proteins expressed in vivo are not detected in vitro. Statistical analysis measuring reproducibility reveals that seven to ten MudPIT measurements are necessary to achieve > or =95% confidence of analytical completeness with current ion trap equipment. Large-scale mapping of the proteome of vascular endothelial cell surface in vivo, as demonstrated here, is advisable because distinct protein expression is apparently regulated by the tissue microenvironment that cannot yet be duplicated in standard cell culture.  相似文献   

20.
Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号