首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence suggests that the generation of cytotoxic T-lymphocyte (CTL) responses specific for a diversity of viral epitopes will be needed for an effective human immunodeficiency virus type 1 (HIV-1) vaccine. Here, we determine the frequencies of CTL responses specific for the simian immunodeficiency virus Gag p11C and HIV-1 Env p41A epitopes in simian-human immunodeficiency virus (SHIV)-infected and vaccinated rhesus monkeys. The p11C-specific CTL response was high frequency and dominant and the p41A-specific CTL response was low frequency and subdominant in both SHIV-infected monkeys and in monkeys vaccinated with recombinant modified vaccinia virus Ankara vectors expressing these viral antigens. Interestingly, we found that plasmid DNA vaccination led to high-frequency CTL responses specific for both of these epitopes. These data demonstrate that plasmid DNA may be useful in eliciting a broad CTL response against multiple epitopes.  相似文献   

2.
Although recent evidence has confirmed the importance of cytotoxic T-lymphocyte (CTL) responses in controlling human immunodeficiency virus type 1 and simian immunodeficiency virus replication, the relevance of the epitopic breadth of those CTL responses remains unexplored. In the present study, we sought to determine whether vaccination can expand CTL populations which recognize a repertoire of viral epitopes that is greater than is typically generated in the course of a viral infection. We demonstrate that potent secondary CTL responses to subdominant epitopes are rapidly generated following a pathogenic simian-human immunodeficiency virus challenge of rhesus monkeys vaccinated with plasmid DNA or recombinant modified vaccinia virus Ankara vaccines. These data indicate that prior vaccination can increase the breadth of the CTL response that evolves after an AIDS virus infection.  相似文献   

3.
The potential contribution of a plasmid DNA construct to vaccine-elicited protective immunity was explored in the simian immunodeficiency virus (SIV)/macaque model of AIDS. Making use of soluble major histocompatibility class I/peptide tetramers and peptide-specific killing assays to monitor CD8(+) T-lymphocyte responses to a dominant SIV Gag epitope in genetically selected rhesus monkeys, a codon-optimized SIV gag DNA vaccine construct was shown to elicit a high-frequency SIV-specific cytotoxic T-lymphocyte (CTL) response. This CTL response was demonstrable in both peripheral blood and lymph node lymphocytes. Following an intravenous challenge with the highly pathogenic viral isolate SIVsm E660, these vaccinated monkeys developed a secondary CTL response that arose with more rapid kinetics and reached a higher frequency than did the postchallenge CTL response in control plasmid-vaccinated monkeys. While peak plasma SIV RNA levels were comparable in the experimentally and control-vaccinated monkeys during the period of primary infection, the gag plasmid DNA-vaccinated monkeys demonstrated better containment of viral replication by 50 days following SIV challenge. These findings indicate that a plasmid DNA vaccine can elicit SIV-specific CTL responses in rhesus monkeys, and this vaccine-elicited immunity can facilitate the generation of secondary CTL responses and control of viral replication following a pathogenic SIV challenge. These observations suggest that plasmid DNA may prove a useful component of a human immunodeficiency virus type 1 vaccine.  相似文献   

4.
Generating broad cellular immune responses against a diversity of viral epitopes is a major goal of current vaccine strategies for human immunodeficiency virus type 1 (HIV-1) and other pathogens. Virus-specific CD8(+) T-lymphocyte responses, however, are often highly focused on a very limited number of immunodominant epitopes. For an HIV-1 vaccine, the breadth of CD8(+) T-lymphocyte responses may prove to be critical as a result of the need to cover a wide diversity of viral isolates in the population and to limit viral escape from dominant epitope-specific T lymphocytes. Here we show that epitope modification strategies can alter CD8(+) T-lymphocyte epitope immunodominance hierarchies elicited by a DNA vaccine in mice. Mice immunized with a DNA vaccine expressing simian immunodeficiency virus Gag lacking the dominant D(b)-restricted AL11 epitope generated a marked and durable augmentation of responses specific for the subdominant D(b)-restricted KV9 epitope. Moreover, anatomic separation strategies and heterologous prime-boost regimens generated codominant responses against both epitopes. These data demonstrate that dominant epitopes can dramatically suppress the immunogenicity of subdominant epitopes in the context of gene-based vaccines and that epitope modification strategies can be utilized to enhance responses to subdominant epitopes.  相似文献   

5.
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-gamma ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.  相似文献   

6.
Immunodominance is a common feature of Ag-specific CTL responses to infection or vaccines. Understanding the basis of immunodominance is crucial to understanding cellular immunity and viral evasion mechanisms and will provide a rational approach for improving HIV vaccine design. This study was performed comparing CTLs specific for the SIV Gag p11C (dominant) and SIV Pol p68A (subdominant) epitopes that are consistently generated in Mamu-A*01(+) rhesus monkeys exposed to SIV proteins. Additionally, vaccinated monkeys were used to prevent any issues of antigenic variation or dynamic changes in CTL responses by continuous Ag exposure. Analysis of the TCR repertoire revealed the usage of higher numbers of TCR clones by the dominant p11C-specific CTL population. Preferential usage of specific TCRs and the in vitro functional TCR-alpha- and -beta-chain-pairing assay suggests that every peptide/MHC complex may only be recognized by a limited number of unique combinations of alpha- and beta-chain pairs. The wider array of TCR clones used by the dominant p11C-specific CTL population might be explained by the higher probability of generating those specific TCR chain pairs. Our data suggest that Ag-specific naive T cell precursor frequency may be predetermined and that this process dictates immunodominance of SIV-specific CD8(+) T cell responses. These findings will aid in understanding immunodominance and designing new approaches to modulate CTL responses.  相似文献   

7.
Given the current difficulties generating vaccine-induced neutralizing antibodies to human immunodeficiency virus (HIV), the focus of the vaccine community has shifted toward creating cytotoxic-T-lymphocyte (CTL)-based vaccines. Recent reports of CTL-based vaccine trials in macaques challenged with simian/human immunodeficiency virus SHIV-89.6P have supported the notion that such vaccines can ameliorate the course of disease. However, almost all of these studies included Env as an immunogen and since SHIV-89.6P is sensitive to neutralizing antibodies it is difficult to determine the mechanism(s) of protection. Consequently, SHIV-89.6P challenge of macaques may be a poor model for determining vaccine efficacy in humans. To ascertain the effect of vaccine-induced multispecific mucosal CTL, in the absence of Env-specific antibody, on the control of an immunodeficiency virus challenge, we vaccinated Mamu-A*01(+) macaques with constructs encoding a combination of CTL epitopes and full-length proteins (Tat, Rev, and Nef) by using a DNA prime/recombinant modified vaccinia virus Ankara (rMVA) boost regimen. The vaccination induced virus-specific CTL and CD4(+) helper T lymphocytes with CTL frequencies as high as 20,000/million peripheral blood mononuclear cells. The final rMVA vaccination, delivered intravenously, engendered long-lived mucosal CTL. At 16 weeks after the final rMVA vaccination, the vaccinees and naive, Mamu-A*01(+) controls were challenged intrarectally with SIVmac239. Massive early anamnestic cellular immune responses controlled acute-phase viral replication; however, the three vaccinees were unable to control virus replication in the chronic phase. The present study suggests that multispecific mucosal CTL, in the absence of neutralizing antibodies, can achieve a modicum of control over early viral replication but are unable to control chronic-phase viral replication after a high-dose mucosal challenge with a pathogenic simian immunodeficiency virus.  相似文献   

8.
Since cytotoxic T lymphocytes (CTLs) are critical for controlling human immunodeficiency virus type 1 (HIV-1) replication in infected individuals, candidate HIV-1 vaccines should elicit virus-specific CTL responses. In this report, we study the immune responses elicited in rhesus monkeys by a recombinant poxvirus vaccine and the degree of protection afforded against a pathogenic simian-human immunodeficiency virus SHIV-89.6P challenge. Immunization with recombinant modified vaccinia virus Ankara (MVA) vectors expressing SIVmac239 gag-pol and HIV-1 89.6 env elicited potent Gag-specific CTL responses but no detectable SHIV-specific neutralizing antibody (NAb) responses. Following intravenous SHIV-89.6P challenge, sham-vaccinated monkeys developed low-frequency CTL responses, low-titer NAb responses, rapid loss of CD4+ T lymphocytes, high-setpoint viral RNA levels, and significant clinical disease progression and death in half of the animals by day 168 postchallenge. In contrast, the recombinant MVA-vaccinated monkeys demonstrated high-frequency secondary CTL responses, high-titer secondary SHIV-89.6-specific NAb responses, rapid emergence of SHIV-89.6P-specific NAb responses, partial preservation of CD4+ T lymphocytes, reduced setpoint viral RNA levels, and no evidence of clinical disease or mortality by day 168 postchallenge. There was a statistically significant correlation between levels of vaccine-elicited CTL responses prior to challenge and the control of viremia following challenge. These results demonstrate that immune responses elicited by live recombinant vectors, although unable to provide sterilizing immunity, can control viremia and prevent disease progression following a highly pathogenic AIDS virus challenge.  相似文献   

9.
Reversion of CTL escape-variant immunodeficiency viruses in vivo   总被引:17,自引:0,他引:17  
Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.  相似文献   

10.
An effective vaccine against human immunodeficiency virus (HIV) should protect against mucosal transmission of genetically divergent isolates. As a safe alternative to live attenuated vaccines, the immunogenicity and protective efficacy of a DNA vaccine containing simian immunodeficiency virus (SIV) strain 17E-Fr (SIV/17E-Fr) gag-pol-env was analyzed in rhesus macaques. Significant levels of cytotoxic T lymphocytes (CTL), but low to undetectable serum antibody responses, were observed following multiple immunizations. SIV-specific mucosal antibodies and CTL were also detected in rectal washes and gut-associated lymphoid tissues, respectively. Vaccinated and naive control monkeys were challenged intrarectally with SIV strain DeltaB670 (SIV/DeltaB670), a primary isolate whose env is 15% dissimilar to that of the vaccine strain. Four of seven vaccinees were protected from infection as determined by the inability to identify viral RNA or DNA sequences in the peripheral blood and the absence of anamnestic antibody responses postchallenge. This is the first report of mucosal protection against a primary pathogenic, heterologous isolate of SIV by using a commercially viable vaccine approach. These results support further development of a DNA vaccine for protection against HIV.  相似文献   

11.
We examined the influence of dose and method of antigen delivery on the dynamics and durability of T-cell responses to candidate human immunodeficiency virus (HIV) vaccines. Codon-optimized sequences from the HIV gag gene were inserted into alternative DNA vaccine vectors to express the coding sequence with or without the tissue plasminogen activator leader sequence. We delivered the vaccines by intramuscular injection as plasmid DNA without adjuvant or as plasmid DNA formulated with a novel block copolymer adjuvant (CRL8623) and then monitored the ensuing T-cell responses by using a gamma interferon enzyme-linked immunospot assay. We demonstrated persistence of the cell-mediated immune (CMI) response in rhesus macaques for at least 18 months following a four-dose vaccination regimen. The plasmid vaccine, with or without CRL8623, was immunogenic in macaques; however, the form coadministered with adjuvant exhibited improved T-cell responses, with a bias toward more antigen-specific CD8(+) T cells. Finally, we examined the fine specificity of the T-cell response to the gag vaccines by testing the response of 23 vaccinated macaques to individual Gag 20-mer peptides. Collectively, the monkeys responded to 25 epitopes, and, on average, each monkey recognized a minimum of 2.7 epitopes. The results indicate that a broad and durable CMI response to HIV DNA vaccines can be induced in a relevant nonhuman primate model.  相似文献   

12.
Human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T-cell responses generated during acute infection play a critical role in the initial control of viremia. However, little is known about the viral T-cell epitopes targeted during acute infection or about their hierarchy in appearance and relative immunodominance over time. In this study, HIV-1-specific CD8+ T-cell responses in 18 acutely infected individuals expressing HLA-A3 and/or -B7 were characterized. Detailed analysis of CD8 responses in one such person who underwent treatment of acute infection followed by reexposure to HIV-1 through supervised treatment interruptions (STI) revealed recognition of only two cytotoxic T-lymphocyte (CTL) epitopes during symptomatic acute infection. HIV-1-specific CD8+ T-cell responses broadened significantly during subsequent exposure to the virus, ultimately targeting 27 distinct CTL epitopes, including 15 different CTL epitopes restricted by a single HLA class I allele (HLA-A3). The same few peptides were consistently targeted in an additional 17 persons expressing HLA-A3 and/or -B7 during acute infection. These studies demonstrate a consistent pattern in the development of epitope-specific responses restricted by a single HLA allele during acute HIV-1 infection, as well as persistence of the initial pattern of immunodominance during subsequent STI. In addition, they demonstrate that HIV-1-specific CD8+ T-cell responses can ultimately target a previously unexpected and unprecedented number of epitopes in a single infected individual, even though these are not detectable during the initial exposure to virus. These studies have important implications for vaccine design and evaluation.  相似文献   

13.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

14.
Protein sequences from multiple hepatitis B virus (HBV) isolates were analyzed for the presence of amino acid motifs characteristic of cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes with the goal of identifying conserved epitopes suitable for use in a therapeutic vaccine. Specifically, sequences bearing HLA-A1, -A2, -A3, -A24, -B7, and -DR supertype binding motifs were identified, synthesized as peptides, and tested for binding to soluble HLA. The immunogenicity of peptides that bound with moderate to high affinity subsequently was assessed using HLA transgenic mice (CTL) and HLA cross-reacting H-2bxd (BALB/c × C57BL/6J) mice (HTL). Through this process, 30 CTL and 16 HTL epitopes were selected as a set that would be the most useful for vaccine design, based on epitope conservation among HBV sequences and HLA-based predicted population coverage in diverse ethnic groups. A plasmid DNA-based vaccine encoding the epitopes as a single gene product, with each epitope separated by spacer residues to enhance appropriate epitope processing, was designed. Immunogenicity testing in mice demonstrated the induction of multiple CTL and HTL responses. Furthermore, as a complementary approach, mass spectrometry allowed the identification of correctly processed and major histocompatibility complex-presented epitopes from human cells transfected with the DNA plasmid. A heterologous prime-boost immunization with the plasmid DNA and a recombinant MVA gave further enhancement of the immune responses. Thus, a multiepitope therapeutic vaccine candidate capable of stimulating those cellular immune responses thought to be essential for controlling and clearing HBV infection was successfully designed and evaluated in vitro and in HLA transgenic mice.  相似文献   

15.
Since most human immunodeficiency virus (HIV) infections are initiated following mucosal exposure to the virus, the anatomic containment or abortion of an HIV infection is likely to require vaccine-elicited cellular immune responses in those mucosal sites. Studying vaccine-elicited mucosal immune responses has been problematic because of the difficulties associated with sampling T lymphocytes from those anatomic compartments. In the present study, we demonstrate that mucosal cytotoxic T lymphocytes (CTL) specific for simian immunodeficiency virus (SIV) and simian HIV can be reproducibly sampled from intestinal mucosal tissue of rhesus monkeys obtained under endoscopic guidance. These lymphocytes recognize peptide-major histocompatibility complex class I complexes and express gamma interferon on exposure to peptide antigen. Interestingly, systemic immunization of monkeys with plasmid DNA immunogens followed by live recombinant attenuated poxviruses or adenoviruses with genes deleted elicits high-frequency SIV-specific CTL responses in these mucosal tissues. These studies therefore suggest that systemic delivery of potent HIV immunogens may suffice to elicit substantial mucosal CTL responses.  相似文献   

16.
Loss of immunogenic epitopes by tumors has urged the development of vaccines against multiple epitopes. Recombinant DNA technologies have opened the possibility to develop multiepitope vaccines in a relatively rapid and efficient way. We have constructed four naked DNA-based multiepitope vaccines, containing CTL, Th cell, and B cell epitopes of the human papillomavirus type 16. Here we show that gene gun-mediated vaccination with an epitope-based DNA vaccine protects 100% of the vaccinated mice against a lethal tumor challenge. The addition of spacers between the epitopes was crucial for the epitope-induced tumor protection, as the same DNA construct without spacers was significantly less effective and only protected 50% of the mice. When tested for therapeutic potential, only the epitope construct with defined spacers significantly reduced the size of established tumors, but failed to induce tumor regression. Only after targeting the vaccine-encoded protein to the protein degradation pathway by linking it to ubiquitin, the vaccine-induced T cell-mediated eradication of 100% of 7-day established tumors in mice. The finding that defined flanking sequences around epitopes and protein targeting dramatically increased the efficacy of epitope string DNA vaccines against established tumors will be of importance for the further development of multiepitope DNA vaccines toward clinical application.  相似文献   

17.
We engineered a multiepitope DNA minigene encoding nine dominant HLA-A2.1- and A11-restricted epitopes from the polymerase, envelope, and core proteins of hepatitis B virus and HIV, together with the PADRE (pan-DR epitope) universal Th cell epitope and an endoplasmic reticulum-translocating signal sequence. Immunization of HLA transgenic mice with this construct resulted in: 1) simultaneous CTL induction against all nine CTL epitopes despite their varying MHC binding affinities; 2) CTL responses that were equivalent in magnitude to those induced against a lipopeptide known be immunogenic in humans; 3) induction of memory CTLs up to 4 mo after a single DNA injection; 4) higher epitope-specific CTL responses than immunization with DNA encoding whole protein; and 5) a correlation between the immunogenicity of DNA-encoded epitopes in vivo and the in vitro responses of specific CTL lines against minigene DNA-transfected target cells. Examination of potential variables in minigene construct design revealed that removal of the PADRE Th cell epitope or the signal sequence, and changing the position of selected epitopes, affected the magnitude and frequency of CTL responses. Our results demonstrate the simultaneous induction of broad CTL responses in vivo against multiple dominant HLA-restricted epitopes using a minigene DNA vaccine and underline the utility of HLA transgenic mice in development and optimization of vaccine constructs for human use.  相似文献   

18.
The phenomenon whereby the host immune system responds to only a few of the many possible epitopes in a foreign protein is termed immunodominance. Immunodominance occurs not only during microbial infection but also following vaccination, and clarification of the underlying mechanism may permit the rational design of vaccines which can circumvent immunodominance, thereby inducing responses to all epitopes, dominant and subdominant. Here, we show that immunodominance affects DNA vaccines and that the effects can be avoided by the simple expedient of epitope separation. DNA vaccines encoding isolated dominant and subdominant epitopes induce equivalent responses, confirming a previous demonstration that coexpression of dominant and subdominant epitopes on the same antigen-presenting cell (APC) is central to immunodominance. We conclude that multiepitope DNA vaccines should comprise a cocktail of plasmids, each with its own epitope, to allow maximal epitope dispersal among APCs. In addition, we demonstrate that subdominant responses are actively suppressed by dominant CD8(+) T-cell responses and that gamma interferon (IFN-gamma) is required for this suppression. Furthermore, priming of CD8(+) T cells to a single dominant epitope results in strong suppression of responses to other normally dominant epitopes in immunocompetent mice, in effect rendering these epitopes subdominant; however, responses to these epitopes are increased 6- to 20-fold in mice lacking IFN-gamma. We suggest that, in agreement with our previous observations, IFN-gamma secretion by CD8(+) T cells is highly localized, and we propose that its immunosuppressive effect is focused on the APC with which the dominant CD8(+) T cell is in contact.  相似文献   

19.
We developed antigen microarrays to profile the breadth, strength, and kinetics of epitope-specific antiviral antibody responses in vaccine trials with a simian-human immunodeficiency virus (SHIV) model for human immunodeficiency virus (HIV) infection. These arrays contained 430 distinct proteins and overlapping peptides spanning the SHIV proteome. In macaques vaccinated with three different DNA and/or recombinant modified vaccinia virus Ankara (rMVA) vaccines encoding Gag-Pol or Gag-Pol-Env, these arrays distinguished vaccinated from challenged macaques, identified three novel viral epitopes, and predicted survival. Following viral challenge, anti-SHIV antibody responses ultimately converged to target eight immunodominant B-cell regions in Env regardless of vaccine regimen, host histocompatibility type, and divergent T-cell specificities. After challenge, responses to nonimmunodominant epitopes were transient, while responses to dominant epitopes were gained. These data suggest that the functional diversity of anti-SHIV B-cell responses is highly limited in the presence of persisting antigen.  相似文献   

20.
Several studies have shown that cytotoxic T lymphocytes (CTLs) play an important role in controlling HIV/SIV infection. Notably, the observation of escape mutants suggests a selective pressure induced by the CTL response. However, it remains difficult to assess the definite role of the cellular immune response. We devise a computational model of HIV/SIV infection having a broad cellular immune response targeting different viral epitopes. The CTL clones are stimulated by viral antigen and interact with the virus population through cytotoxic killing of infected cells. Consequently, the virus population reacts through the acquisition of CTL escape mutations. Our model provides realistic virus dynamics and describes several experimental observations. We postulate that inter-clonal competition and immunodominance may be critical factors determining the sequential emergence of escapes. We show that even though the total killing induced by the CTL response can be high, escape rates against a single CTL clone are often slow and difficult to estimate from infrequent sequence measurements. Finally, our simulations show that a higher degree of immunodominance leads to more frequent escape with a reduced control of viral replication but a substantially impaired replicative capacity of the virus. This result suggests two strategies for vaccine design: Vaccines inducing a broad CTL response should decrease the viral load, whereas vaccines stimulating a narrow but dominant CTL response are likely to induce escape but may dramatically reduce the replicative capacity of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号