首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The removal of four of five roots of 7–8-day-old wheat plants resulted in the activation of lateral root growth and the initiation of lateral root primordia on the remained root as compared to the main root of intact plants. The extent of this growth response depended on placing cut surface above or beneath the surface of the nutrient solution. The measurement of the IAA and cytokinin contents showed accumulation of these hormones in the root of experimental plants as compared to the main root of intact plants. IAA accumulation was correlated with the number of lateral roots and their primordia. The analysis of hormonal balance and their transport from the shoot to the root permits discussing the involvement of these hormones and their interaction in the control of root growth at the stages of both primordium initiation and development and lateral root elongation.  相似文献   

2.
3.
Abstract The present paper describes the effects of growth of roots of wheat (Triticum aestivum cv. Gamenya) in hypoxic nutrient solutions on acrenchyma formation and O2 movement from shoots to roots. Two types of roots were investigated: (1) seminal roots of 4–7-d-old seedlings, and (2) seminal and nodal roots of 10–28-d-old plants. Gas-filled porosity of seminal and nodal roots increased from 3 to 12% and from 5–7 to 11–15%, respectively, when the roots emerged in stagnant or N2-flushed solutions (0.003 mol m ?3 O2) compared with growth in continuously acrated solutions (0.26 mol m ?3 O2). However, neither root type increased in porosity when they were longer than 100–200 mm at the start of the exposure to these stagnant or N2-flushed treatments. A vernier microscope and cylindrical platinum-electrode were used to examine the relationship between root extension and transport of O2 from shoots to roots via the gas spaces. Measurements were made when the roots were in an anoxic medium and were dependent solely on O2 supplied from the shoots. For seminal roots of 5–7-d-old seedlings raised in stagnant solutions (90–100 mm), internal O2 transport was sufficient to support a rate of root elongation in the O2-free medium of between 0.03 and 0.17 mm h?1. When the O2 pressure around the shoots was increased from 20 to 100 kPa O2, the O2 concentrations at the walls of the expanding zone (2–7 mm from the tip) of these roots increased from 0.006 mol m?3 to between 0.04 and 0.26 mol m?3, and the rate of root extension increased five-fold. Oxygen transport to roots grown continuously in acrated solutions was considerably less than for roots raised in stagnant solutions; this difference was greater for seminal than for nodal roots. When the acrated seminal roots were longer than 100 mm and transferred to an O2-free root medium, O2 concentration became zero at the root tip causing elongation to cease. After 24 h of anoxia, none of these roots were able to resume elongation following a return to acrated solutions.  相似文献   

4.
The activity of a range of endo- and exopeptidase enzymes have been measured in the glumes, flag leaf and stem during the period of grain development in wheat. The enzymes show a sequential pattern of appearance with activity peaks occurring at a number of intervals from anthesis until just prior to the cessation of grain growth. Of the enzymes studied only the haemoglobin- and casein-degrading activity and alanylglycine-dipeptidase activity increased during the period of rapid protein loss, while aminopeptidase, carboxypeptidase and leucyltyrosine dipeptidase reached maximum activity prior to this period.  相似文献   

5.
Patterns of translocation of recently-assimilated phosphorus (P) exported from'young' source roots (located 3–4 nodes from the stolon apex) and 'old' source roots (located near the base of the stolon) on the primary stolon of clonal plants of the forage legume white clover ( Trifolium repens L.) were determined using 32P. Plants of a small-leaved genotype and of a large-leaved genotype were grown in sand culture at two notionally limiting or near-limiting rates of P supply and one non-limiting rate of supply. The small-leaved genotype showed little response in growth rate to the full range of P treatments whereas growth of the large-leaved genotype at the non-limiting rate of P supply was 2. 4 times greater than at the two low rates of P supply. Source roots of both genotypes exported only 26–30% of the P they acquired to the shoot within 24 h when P supply was limited whereas at the high-P rate 54% of recently-assimilated P was exported. Patterns of translocation of exported P to specific sinks differed little between the genotypes and the P treatments; branches were the main sink, accounting for nearly 80% of the estimated amounts of P (μg day−1) exported from young and old roots combined. Translocation patterns from individual roots were determined largely by the modular structure of plants and by the location of the root relative to the major sinks, and were therefore consistent with the same source-sink principles which govern carbohydrate translocation in clonally-growing species. There were strong suggestions that storage of P in stolons and roots played a much greater role in the growth of the small-leaved plants than of the large-leaved plants.  相似文献   

6.
Using a database of 2510 measurements from 287 species, we assessed whether general relationships exist between mass-based dark respiration rate and nitrogen concentration for stems and roots, and if they do, whether they are similar to those for leaves. The results demonstrate strong respiration–nitrogen scaling relationships for all observations and for data averaged by species; for roots, stems and leaves examined separately; and for life-forms (woody, herbaceous plants) and phylogenetic groups (angiosperms, gymnosperms) considered separately. No consistent differences in the slopes of these log–log scaling relations were observed among organs or among plant groups, but respiration rates at any common nitrogen concentration were consistently lower on average in leaves than in stems or roots, indicating that organ-specific relationships should be used in models that simulate respiration based on tissue nitrogen concentrations. The results demonstrate both common and divergent aspects of tissue-level respiration–nitrogen scaling for leaves, stems and roots across higher land plants, which are important in their own right and for their utility in modelling carbon fluxes at local to global scales.  相似文献   

7.
This paper presents information about the release of nitrogen and phosphorus from dying grass roots and the capture of phosphorus by other, living plants. We have paid particular attention to the part played by mycorrhizas in this phosphorus capture, and the possible importance of mycorrhizal links between dying and living roots.WhenLolium perenne plants were grown with ample nutrients and their roots then detached and buried in soil, about half the nitrogen and two-thirds of the phosphorus was lost in three weeks, but only one-fifth of the dry weight. The C:N and C:P ratios suggest that microbial growth in the roots would at first be C-limited but would become N- and P-limited within three weeks.Rapid transfer of32P can occur from dying roots to those of a living plant if the two root systems are intermingled. The amount transferred was substantially increased in two species-combinations that are known to form mycorrhizal links between their root systems. In contrast, in a species-combination where only the living (receiver) plant could become mycorrhizal no significant increase of32P transfer occurred. This evidence, although far from conclusive, suggests that mycorrhizal links between dying and living roots can contribute to nutrient cycling. This research indicates a major difference in nutrient cycling processes between perennial and annual crops.  相似文献   

8.
Nitrogen-fixation (C2H2-reduction) was demonstrated in wheat root nodules (p-nodules) induced by 2,4-dichlorophenoxyacetate (2,4-D) and inoculated withA. brasilense. By lowering the O2 tension it was possible to distinguish the nitrogenase activity of bacteria located within thep-nodule of the wheat root system from that in the rhizosphere. Using cytological evidence, nitrogenase activity was attributed mainly to be coming from the bacteria within thep-nodule. It was also shown that the host plant was able to supply the necessary substrate required for the bacterial N2-fixation (C2H2-reduction) within thep-nodules.  相似文献   

9.
A study of the tensile force required to pull wheat roots from soil   总被引:3,自引:0,他引:3  
Experiments were carried out to determine the tensile properties of mature wheat roots and the force necessary to pull roots from undisturbed soils at a range of moisture contents using an Instron materials testing rig. Roots decreased in cross sectional area from 1.5 to 0.1 mm2and in tensile strength from 7.0 to 2.3 Newtons (N) along the first 12 cm of their length. Breaking strain was constant along the root but the breaking stress increased. Increased seeding rate decreased root diameter and tensile strength but plant growth regulators and fertiliser nitrogen level did not affect the tensile properties. Roots were pulled from mesh tubes of soil (25 mm ± 75 mm) into which they had grown. The peak loads for sandy clay loam and sandy loam soils were 4.8 and 3.9 N respectively and increasing the soil moisture from 17% to 26% reduced the peak load from 5.2 N to 3.5 N. With the drier soil the inner stele pulled free leaving the outer periderm in the soil in a higher proportion of the roots indicating a stronger root/soil bond than in the wetter soil. The load us displacement relationship when pulling roots from soil resembled that for a fibre reinforced composite material. The presence of branch roots resulted in an uneven trace in which there were a number of sub-peaks as branch roots gave way. It is suggested that soil wetting could contribute to lodging of wheat by reducing the resistance of roots to slippage and breaking.  相似文献   

10.
11.
在年均降水量632 mm的黄土高原南部半湿润红油土上,以NR9405、9430、偃师9号、小偃6号、陕229、西农2208、矮丰3号和商188为供试材料,进行大田试验,研究在不施氮和施氮(90 kg.hm-2)条件下不同品种冬小麦灌浆特性及物质转移效率。结果表明,冬小麦干物质生产及物质转移效率共同受品种和氮肥的影响。开花期老叶、茎鞘和成熟期茎鞘、籽粒干重间存在显著差异。施氮对开花期、成熟期地上部各部位干重均有明显的促进作用。各部位干物质转移量、转移效率和转移量对籽粒的贡献率既与品种有关,也与施氮有关;氮肥的影响又因品种不同而异。干物质转移量、转移效率和转移干物质对籽粒的贡献率在8个供试品种中,最高的是NR9405,最低的是偃师9号,除NR9405和西农2208籽粒中50%以上干物质来自于开花前贮存光合产物的再转移外,其余6个品种籽粒中50%以上的干物质来自于开花后新合成的同化产物。干物质转移量对籽粒的贡献率以穗轴+颖壳部位最低,且多数处理为负值,以茎秆为最大,叶片居中。从总体看,干物质转移量、干物质转移率和干物质转移量对粒重的贡献率在不同品种之间的差异大于施氮处理间的差异,施氮后降低了干物质向籽粒中的转移。  相似文献   

12.
基于以空间代替时间的原则,初步研究了杉木树桩在分解过程中边桩和心桩密度的变化及根桩分解过程中几种养分元素的释放过程.结果表明,边桩每年密度损失率k为2.767×10-2,而心桩为2.255×10-2;不同采伐年代的根系和边桩中N、P含量随分解年限的增加而下降,而心桩中N、P含量随分解年限的增加而出现先增加后下降的的趋势,根桩中K浓度在分解过程中的前两年有较大幅度的下降,根桩中有机质含量在其分解过程中都是单调降低的,对根系和树桩中养分元素含量进行比较发现,在分解初期,根系中N、P、K含量都高于边桩和心桩,而有机质含量边桩和心桩高于根系.  相似文献   

13.
14.
Protochlorophyll forms in roots of dark-grown plants   总被引:1,自引:0,他引:1  
Protochlorophyll was found in roots of dark-grown plants of seven species investigated. It was identified by absorbance and fluorescence spectra of acetone and ether extracts. Chlorophyll was also found in roots of one pea species. The concentration of protochlorophyll was usually highest in young root tips and decreased upwards along the roots. The maxima of the in vivo absorbance spectra of the species studied varied between 634 and 638 nm. Low temperature in vivo fluorescence emission spectra had two maxima, one at ca 633 and the other at ca 642 nm, when the wavelengths of the excitation light were 440 and 460 nm, respectively. In vivo fluorescence excitation spectra displayed a shift of the excitation maximum from 438 to 445 nm, when emission varied from 620 to 647.5 nm. Deconvolution of these three types of spectra into Gaussian components made it possible to identify two spectral forms of protochlorophyll: protochlorophyll629–633 and protochlorophyll638–642.  相似文献   

15.
Abstract Experiments with isolated roots of wheat plants suggested that when water uptake rates are low, low concentrations of abscisic acid (ABA) may increase the flux of water into roots. This increase was recorded despite an ABA-stimulated reduction in the hydraulic conductance of the whole root system. Hydraulic conductances were measured under steady-state conditions. A system is described where the stomatal behaviour and water movement through roots of a single intact plant may be concurrently monitored. Experiments with intact plants confirmed that application of ABA could increase the rate of water movement into roots when uptake rates were low. No such increase was observed at high flux rates. Application of ABA to roots caused partial stomatal closure and caused conductance to oscillate around a reduced mean value. An ABA-stimulated increase in the turgor sensitivity of stomata is postulated and the significance of this effect is discussed.  相似文献   

16.
The translocation of manganese (Mn), nickel (Ni), cobalt (Co), zinc (Zn) and cadmium (Cd) in white lupin (Lupinus albus cv. Amiga) was compared considering root-to-shoot transport, and redistribution in the root system and in the shoot, as well as the content at different stages of cluster roots and in other roots. To investigate the redistribution of these heavy metals, lupin plants were labelled via the root for 24 h with radionuclides and subsequently grown hydroponically for several weeks. 54Mn, 63Ni and 65Zn were transported via the xylem to the shoot. 63Ni and 65Zn were redistributed afterwards via the phloem from older to younger leaves, while 54Mn remained in the oldest leaves. A strong retention in the root was observed for 57Co and 109Cd. Cluster roots contained higher concentrations of all heavy metals than noncluster roots. Concentrations were generally higher at the beginning of cluster root development (juvenile and immature stages). Mature cluster roots also contained high levels of 54Mn and 57Co, but only reduced concentrations of 63Ni, 65Zn and 109Cd.  相似文献   

17.
Hydraulic lift: consequences of water efflux from the roots of plants   总被引:29,自引:0,他引:29  
Hydraulic lift is the passive movement of water from roots into soil layers with lower water potential, while other parts of the root system in moister soil layers, usually at depth, are absorbing water. Here, we review the brief history of laboratory and field evidence supporting this phenomenon and discuss some of the consequences of this below-ground behavior for the ecology of plants. Hydraulic lift has been shown in a relatively small number of species (27 species of herbs, grasses, shrubs, and trees), but there is no fundamental reason why it should not be more common as long as active root systems are spanning a gradient in soil water potential (Ψs) and that the resistance to water loss from roots is low. While the majority of documented cases of hydraulic lift in the field are for semiarid and arid land species inhabiting desert and steppe environments, recent studies indicate that hydraulic lift is not restricted to these species or regions. Large quantities of water, amounting to an appreciable fraction of daily transpiration, are lifted at night. This temporary partial rehydration of upper soil layers provides a source of water, along with soil moisture deeper in the profile, for transpiration the following day and, under conditions of high atmospheric demand, can substantially facilitate water movement through the soil-plant-atmosphere system. Release of water into the upper soil layers has been shown to afford the opportunity for neighboring plants to utilize this source of water. Also, because soils tend to dry from the surface downward and nutrients are usually most plentiful in the upper soil layers, lifted water may provide moisture that facilitates favorable biogeochemical conditions for enhancing mineral nutrient availability, microbial processes, and the acquisition of nutrients by roots. Hydraulic lift may also prolong or enhance fine-root activity by keeping them hydrated. Such indirect benefits of hydraulic lift may have been the primary selective force in the evolution of this process. Alternatively, hydraulic lift may simply be the consequence of roots not possessing true rectifying properties (i.e., roots are leaky to water). Finally, the direction of water movement may also be downward or horizontal if the prevailing Ψs gradient so dictates, i.e., inverse, or lateral, hydraulic lift. Such downward movement through the root system may allow growth of roots in otherwise dry soil at depth, permitting the establishment of many phreatophytic species. Received: 2 June 1997 / Accepted: 24 September 1997  相似文献   

18.
3种入侵植物叶片挥发物对旱稻幼苗根的影响   总被引:1,自引:0,他引:1  
入侵植物通过化感作用对入侵地的生态系统构成了严重的威胁,影响了入侵域农作物的生产。采用石蜡切片技术,利用光学显微镜进行观察,研究了不同质量浓度的黄顶菊、三叶鬼针草、胜红蓟3种入侵植物的叶片挥发物对旱稻幼苗初生根的结构以及根系发育的影响,结果表明:低质量浓度(5g)的三叶鬼针草和胜红蓟叶片挥发物对根皮层起抑制作用,低质量浓度(5g)的三叶鬼针草挥发物对维管柱有促进作用,而黄顶菊挥发物对髓腔影响比较大,表现为低浓度抑制,高浓度促进;20g质量浓度的三种入侵植物叶片挥发物对旱稻幼苗初生根结构影响最大,均出现结构上的变异;对侧根的发育随浓度的增加而呈现明显的抑制作用,20g质量浓度时没有侧根的发生。表明入侵植物对受体植物根结构的影响随植物种类和挥发物浓度的不同而有不同的特点。  相似文献   

19.
研究了施氮和不施氮条件下6个杂交小麦及其7个亲本不同器官的氮转运,结果表明:施氮时叶中的氮转运受到极显著的促进,其氮转运量为不施氮的4倍,总麦草90%以上的氮转运来自叶片;无论施氮与否,叶中氮的转运率和贡献率最大,穗壳次之,施氮与否的同一器官并无显著差异;不施氮的各器官氮的转运量、转运率和贡献率多表现正的杂种优势,施氮的多呈负向优势.  相似文献   

20.
This study describes the successive stages of development of branches from axillary buds in fully rooted plants of Trifolium repens grown in near optimal conditions, and the way in which this developmental pathway differs when nodal root formation is prevented as plants grow out from a rooted base. Cuttings of a single genotype were established in a glasshouse with nodal root systems on the two basal phytomers and grown on so that nodal rooting was either permitted (+R) or prevented (-R). In +R plants, axillary tissues could be assigned to one of four developmental categories: unemerged buds, emerged buds, unbranched lateral branches or secondarily branched lateral branches. In -R plants, branch development was retarded, with the retardation becoming increasingly pronounced as the number of -R phytomers on the primary stolon increased. Retarded elongation of the internodes of lateral shoots on -R plants resulted in the formation of a distinct fifth developmental category: short shoots (defined as branches with two or more leaves but with mean internode length equal to, or less than, 10% of that of the immediately proximal internode on the parent stolon) which had reduced phytomer appearance rates but retained the potential to develop into lateral branches. Transfer of +R plants to -R conditions, and vice versa, after 66 d demonstrated that subsequent branch development was wholly under the control of the youngest nodal root present, regardless of the age and number of root systems proximal to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号