首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxin-antitoxin systems encoded by bacterial plasmids and chromosomes typically consist of a toxin that inhibits growth of the host cell and a specific antitoxin. In this report, the chpK gene from the chromosomal toxin-antitoxin locus of the spirochete Leptospira interrogans was studied in both prokaryotic and eukaryotic systems. Cloning of the the spirochetal chpK gene into a mycobacterial expressing vector led to dramatic reductions of transformation efficiency in both Mycobacterium smegmatis and Mycobacterium bovis BCG. However, few mycobacterial transformants were obtained. This result could be due to plasmid structural modifications leading to disruption of chpK expression, suggesting that L. interrogans ChpK is highly toxic for mycobacteria. Presence of the L. interrogans chpK gene was also found to inhibit cell growth of the yeast Saccharomyces cerevisiae. These results show that ChpK possesses a broad activity against both prokaryotes and eukaryotes, suggesting that the cellular target of the toxin is conserved in these organisms.  相似文献   

2.
S10-spc-alpha is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-alpha locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-alpha locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-alpha locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously.  相似文献   

3.
Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs.  相似文献   

4.
The pathogenic spirochete Leptospira interrogans disseminates throughout its hosts via the bloodstream, then invades and colonizes a variety of host tissues. Infectious leptospires are resistant to killing by their hosts' alternative pathway of complement-mediated killing, and interact with various host extracellular matrix (ECM) components. The LenA outer surface protein (formerly called LfhA and Lsa24) was previously shown to bind the host ECM component laminin and the complement regulators factor H and factor H-related protein-1. We now demonstrate that infectious L. interrogans contain five additional paralogs of lenA, which we designated lenB, lenC, lenD, lenE and lenF. All six genes encode domains predicted to bear structural and functional similarities with mammalian endostatins. Sequence analyses of genes from seven infectious L. interrogans serovars indicated development of sequence diversity through recombination and intragenic duplication. LenB was found to bind human factor H, and all of the newly-described Len proteins bound laminin. In addition, LenB, LenC, LenD, LenE and LenF all exhibited affinities for fibronectin, a distinct host extracellular matrix protein. These characteristics suggest that Len proteins together facilitate invasion and colonization of host tissues, and protect against host immune responses during mammalian infection.  相似文献   

5.
Leptospira interrogans is the primary causative agent of the most widespread zoonotic disease, leptospirosis. An in-depth structural characterization of L. interrogans is needed to understand its biology and pathogenesis. In this study, cryo-electron tomography (cryo-ET) was used to compare pathogenic and saprophytic species and examine the unique morphological features of this group of bacteria. Specifically, our study revealed a structural difference between the cell envelopes of L. interrogans and Leptospira biflexa involving variations in the lipopolysaccharide (LPS) layer. Through cryo-ET and subvolume averaging, we determined the first three-dimensional (3-D) structure of the flagellar motor of leptospira, with novel features in the flagellar C ring, export apparatus, and stator. Together with direct visualization of chemoreceptor arrays, DNA packing, periplasmic filaments, spherical cytoplasmic bodies, and a unique "cap" at the cell end, this report provides structural insights into these fascinating Leptospira species.  相似文献   

6.
7.
8.
The recent availability of the complete genome sequences of Leptospira interrogans, the agent of leptospirosis, has allowed the identification of several putative virulence factors. However, to our knowledge, attempts to carry out gene transfer in pathogenic Leptospira spp. have failed so far. In this study, we show that the Himar1 mariner transposon permits random mutagenesis in the pathogen L. interrogans. We have identified genes that have been interrupted by Himar1 insertion in 35 L. interrogans mutants. This approach of transposon mutagenesis will be useful for understanding the spirochetal physiology and the pathogenic mechanisms of Leptospira, which remain largely unknown.  相似文献   

9.
In our previous paper (Matsuo, K., Isogai, E., and Araki, Y., Carbohydr. Res., 328: 517-524, 2000), antigenic polysaccharides obtained from the lipopolysaccharide (LPS) fraction of a nonpathogenic leptospira, Leptospira biflexa patoc Patoc I, are shown to be broadly crossreactable with most rabbit antisera elicited by immunization with various pathogenic leptospires. The result led us to test a protective effect of the same LPS in a hamster model system by heterologously challenging with a pathogenic leptospira, L. interrogans manilae UP-MMG. Firstly, a similarity in the antigenic epitopes of L. biflexa and L. interrogans was confirmed by the following assays. In the microscopic agglutination test (MAT), a hamster antiserum elicited by immunization with the L. biflexa-LPS preparation was shown to agglutinate cells of L. interrogans. Contrarily, in the enzyme-linked immunosorbent assay (ELISA), the L. biflexa-LPS preparation was shown to crossreact with a hamster antiserum elicited by immunization with whole cells of L. interrogans. These results suggest that the same or closely related antigens may be present on the cell surfaces of both L. biflexa patoc Patoc I and L. interrogans manilae UP-MMG. Furthermore, in a protective assay, the prior administration of a L. biflexa-LPS preparation resulted in raising a protective response in hamsters against challenge by L. interrogans without any side effect. The protective effect was strongly dependent on the dose amounts and/or administration times of L. biflexa-LPS. Thus, L. biflexa-LPS preparations can use as a potent vaccine against leptospirosis caused by various leptospires.  相似文献   

10.
克隆表达钩端螺旋体表层膜蛋白新基因Lslp并分析表达产物的免疫原性。根据前期研究得到的致病钩体新基因Lslp(GenBankAF32 5 80 7)的序列设计引物 ,在 6株致病钩体中扩增Lslp基因并测序。以BamHⅠ酶切Lslp和pGEX 1 λT ,构建重组质粒并用酶切和PCR鉴定 ,进一步在大肠杆菌中诱导表达 ,并进行免疫印迹分析 ;纯化表达产物免疫家兔 ,ELISA检测血清抗体滴度。结果显示Lslp在 6株致病钩体中均能扩增出相应片段 ,且序列同源性达到99 6 % ;构建高效原核表达重组质粒pGST LslP ,经IPTG诱导在大肠杆菌中可表达出 6 6kDGST融合蛋白 ,并能与全钩抗血清发生免疫印迹反应 ;将上述融合蛋白免疫新西兰大白兔产生 1 :5 1 2 0高滴度的IgG抗体。研究结果提示致病钩体膜蛋白新基因Lslp可在大肠杆菌进行高效表达 ,表达产物能被全钩抗血清识别 ,为研究钩体的致病机制和筛选保护性抗原提供了基础  相似文献   

11.
Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water.  相似文献   

12.
目的 克隆表达和鉴定问号钩端螺旋体黄疸出血群赖型赖株中疫苗候选基因LB061,研究LB061的免疫原性和在不同血清型钩端螺旋体菌中的保守性。方法 生物信息学软件分析预测LB061的特征。构建原核表达质粒pQE31-LB061,经IPTG诱导后用SDS-PAGE及Western印迹法鉴定表达情况。用表达的重组蛋白免疫BALB/c小鼠,Western印迹法检测其抗原性和在不同血清型钩端螺旋体中的保守性。Western印迹法检测钩端螺旋体全菌兔抗血清中的LB061抗体。结果 生物信息学预测结果显示,LB061含有DUF839家族结构域。成功克隆了重组质粒pQE31-LB061,表达的重组蛋白能刺激BALB/c小鼠产生抗体(效价为1∶32000),并能与相应抗体反应,具有良好的抗原性。在16株不同血清型的钩端螺旋体中均可检测到LB061蛋白的表达,并在钩端螺旋体赖株全菌兔抗血清中检测到其抗体。结论 LB061蛋白可以作为外膜蛋白刺激宿主免疫系统产生抗体,具有良好的抗原性和保守性。本研究为其作为疫苗候选基因的研究奠定了基础。  相似文献   

13.
14.
The motility and chemotaxis system are critical for the virulence of pathogenic leptospire, which enable them to penetrate host tissue barriers during infection. The completed genome sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroups Icterohaemorrhagiae (L. interrogans strain Lai) suggested that there were multiple copies of putative chemotaxis homologues located at its large chromosome. In order to verify the function of these proteins, the putative cheY genes were cloned into pQE31 vector and then expressed, respectively, in wild-type Escherichia coli strain RP437 and cheY defective strain RP5232. The results showed that all the five cheYs could restore the swarming of RP5232 strain to some extend. Overexpression of CheYs in RP437 showed inhibited swarming of RP437. To investigate the mechanism of chemotaxis signaling in L. interrogans strain Lai, certain aspartates (Asp-53, Asp-61, Asp-70, Asp-62, and Asp-66 for L. interrogans strain Lai CheY1, CheY2, CheY3, CheY4, and CheY5, respectively) were mutated. Expression of these mutated cheYs manifested neither restoration of the swarming ability of RP5232 nor inhibition on swarming ability of RP437. Multiple amino acid sequence alignment predicted ternary structures and the result of mutation experiment suggested that these conserved aspartate residues of L. interrogans were analogous to that in E. coli CheY in function and structure. So, L. interrogans and E. coli may have similar mechanisms of activation of the chemotaxis phosphorelay pathway, but there are differences in their control by signal terminator.  相似文献   

15.
Leptospirosis is a widespread zoonotic infection that primarily affects residents of tropical regions, but causes infections in animals and humans in temperate regions as well. The agents of leptospirosis comprise several members of the genus Leptospira, which also includes non-pathogenic, saprophytic species. Leptospirosis can vary in severity from a mild, non-specific illness to severe disease that includes multi-organ failure and widespread endothelial damage and hemorrhage. To begin to investigate how pathogenic leptospires affect endothelial cells, we compared the responses of two endothelial cell lines to infection by pathogenic versus non-pathogenic leptospires. Microarray analyses suggested that pathogenic L. interrogans and non-pathogenic L. biflexa triggered changes in expression of genes whose products are involved in cellular architecture and interactions with the matrix, but that the changes were in opposite directions, with infection by L. biflexa primarily predicted to increase or maintain cell layer integrity, while L. interrogans lead primarily to changes predicted to disrupt cell layer integrity. Neither bacterial strain caused necrosis or apoptosis of the cells even after prolonged incubation. The pathogenic L. interrogans, however, did result in significant disruption of endothelial cell layers as assessed by microscopy and the ability of the bacteria to cross the cell layers. This disruption of endothelial layer integrity was abrogated by addition of the endothelial protective drug lisinopril at physiologically relevant concentrations. These results suggest that, through adhesion of L. interrogans to endothelial cells, the bacteria may disrupt endothelial barrier function, promoting dissemination of the bacteria and contributing to severe disease manifestations. In addition, supplementing antibiotic therapy with lisinopril or derivatives with endothelial protective activities may decrease the severity of leptospirosis.  相似文献   

16.
Leptospira interrogans is a pathogenic bacterium with a low G+C content (34 to 39%). The restriction enzymes NotI, AscI, and SrfI cut the chromosome of L. interrogans serovar icterohaemorrhagiae into 13, 3, and 5 fragments separable by one- and two-dimensional pulsed-field gel electrophoresis (PFGE). The genome is composed of a circular 4.6-Mbp chromosome and a 0.35-Mbp extrachromosomal element. A physical map of the chromosome was constructed for NotI, AscI, and SrfI by using single and double digests, or partial NotI digests obtained at random or by cross-protection of NotI sites by FnuDII methylase, and linking clones. rRNA genes were found to be widely scattered on the chromosome.  相似文献   

17.
Leptospirosis is a global zoonotic disease, caused by pathogenic Leptospira species including Leptospira interrogans, that causes public health and livestock problems. Pathogenesis, immune response and cellular receptors for Leptospira are not well understood. Interaction of dendritic cells (DCs) with L. interrogans serovar Autumnalis L-643 and BL-6 isolated from leptospirosis patients, and both virulent and avirulent serovar Pyrogenes 2317 strains isolated from animal were investigated. Carbohydrate analysis using lectins showed that all of these leptospires contained high mannose components as a common backbone and DC-SIGN was involved in leptospires' attachment. Interaction of the L. interrogans strains with DCs induced maturation, but had different effects on IL-10, IL-12p70 and tumor necrosis factor (TNF)-alpha production. Both virulent and avirulent Pyrogenes 2317 and Autumnalis BL-6 but not L-643 strains induced IL-12p70 and TNF-alpha production, but minimal IL-10 secretion. These data demonstrated that L. interrogans binds DC-SIGN and induces DCs maturation and cytokine production, which should provide new insights into cellular immune processes during leptospirosis.  相似文献   

18.
Major progress has been made in the basic research of leptospirosis a global zoonotic disease. Recent knowledge on the genome of L. interrogans and the emergence of new genetic tools for comparative genetic studies have further developed research into the genetic pathogenesis of this illness. Many of these studies have compared the putative pathogenicity factors found in L. interrogans, with representative strains of saprophytic leptospires. Leptospires display a rich repertoire of adhesins endowed with multifunctional biological activities such as adhesion to host tissue components, plasminogen activation, resistance to complement. These adhesins are proteins or liproteins located on the outer membrane. Some of them (LenA) escape innate defence such as complement killing and some escape phagocytosis. Much work has to be done to elucidate many other aspects of Leptospira pathogenic factors such as those switched on in chronic infection.  相似文献   

19.
问号钩体粘附侵袭相关基因特征分析   总被引:2,自引:0,他引:2  
使用NCBI ,Swissprot/TrEMBL ,ProDom ,Pfam ,Tmpred ,SignalP ,ClustW等网络资源和软件 ,根据问号钩体黄疸出血型赖株粘附侵袭相关基因诠释结果 ,对mce ,invA ,mviN和atsE四个粘附侵袭相关基因编码蛋白的结构域、跨膜区域和信号肽等进行了详细分析 ,并使用Bioedit,Mega2软件进行氨基酸多重序列比较并绘制系统发生树。结果显示 ,mce和mviN为穿膜蛋白 ,invA和atsE为菌体内蛋白质 ;许多对哺乳动物和对植物致病的微生物具有mce ,invA ,mviN和atsE四个粘附侵袭相关基因 ,其表达的蛋白质在感染宿主过程中起重要作用 ,钩体的粘附侵袭相关蛋白与它们在一级结构上有较高相似性。据生物信息学结果推测 ,问号钩体黄疸出血型赖株粘附侵袭相关基因和钩体致病性间有密切关系 ,其编码蛋白在致病过程中可能起重要作用  相似文献   

20.
以钩端螺旋体基因组DNA为模板,通过酶联聚合反应(PCR)得到钩端螺旋体中prmA的同源基因liprmA的全基因编码序列,并克隆到原核表达载体pET22b中。通过优化大肠杆菌培养和诱导条件,含目的蛋白的融合蛋白可溶表达量达到40 mg/L,约占菌体总蛋白的40%。经Ni-NTA His Bind亲和柱纯化,得到纯度大于95%的目的蛋白。氨基酸序列同源性分析显示liPrmA与原核生物和真核生物的核糖体蛋白L11甲基化转移酶的功能域一级结构高度一致;活性分析显示,纯化的liPrmA有钩端螺旋体核糖体蛋白L11甲基化转移酶的活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号