首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Seventeen-day-old rats were injected intracranially with [3H]leucine, then sacrificed between 1 and 24 h. Myelin was prepared from the brains on discontinuous sucrose gradients and the proteins were separated by discontinuous gel electrophoresis in buffers containing sodium dodecyl sulphate. Proteins were stained with acid Fast Green and the distribution was quantitated by densitometry. The gels were then sliced and the radioactivity in each slice was determined. Between 1 and 24 h, the radioactivity in proteolipid protein increased from 18% to 37% of the total radioactivity in the proteins of isolated myelin. During this same period, the per cent distribution of radioactivity in basic and Wolfgram proteins remained constant while that in the remaining high molecular weight proteins decreased. Similar results were also obtained with [3H]glycine as a precursor. The relative specific activity of all of the myelin proteins increased between 1 and 6 h, then remained constant between 6 and 24 h. At 1 h, proteolipid protein reached only 25% of its maximal (6 h) relative specific radioactivity, while the other two proteins reached 50% of maximum. These results indicate a lag in the appearance of labelled amino acids in proteolipid protein relative to the other myelin proteins.  相似文献   

2.
—We studied the incorporation of radioactivity into individual proteins of myelin by sodium dodecyl sulfate polyacrylamide gel electrophoresis after the injection of [3H]tryptophan into the right eye of developing rabbits. We found that the specific activity of basic protein (c.p.m./mg of basic protein) and the specific activity of DM-20 and proteolipid protein (c.p.m./mg total myelin protein applied to the gel) did not approach the ratio predicted by decussation of the fibres of the rabbit optic nerve. The specific activity of Wolfgram protein, however, approached an expected ratio of 15:1. We therefore concluded that myelin basic protein, DM-20 and proteolipid protein were probably not synthesized in retinal ganglion cells.  相似文献   

3.
Effects of monensin on posttranslational processing of myelin proteins   总被引:13,自引:11,他引:2  
Rat brain slices were incubated with [3H]palmitic acid and [14C]glycine to label the lipid and protein moieties, respectively, of myelin proteolipid protein (PLP). The effects of monensin on posttranslational processing of proteins were examined by measuring the appearance of [14C]glycine- and [3H]palmitate-labeled proteins in myelin and myelin-like fractions. At 0.01 and 0.10 microM, monensin did not appreciably affect total lipid or protein synthesis; higher concentrations caused increased inhibition. Monensin at 0.10 microM markedly decreased the appearance of [14C]glycine-labeled PLP in myelin, but had little effect on the 14C basic proteins or the incorporation of [3H]palmitic acid into total or myelin PLP. The same relative effect was apparent at higher monensin concentrations. In the myelin-like fraction, monensin at 0.10 microM also depressed entry of [14C]glycine into protein comigrating with PLP, and again had no effect on incorporation of [3H]palmitic acid. In addition, monensin increased the [3H]palmitate label associated with two high-molecular-weight proteins in the myelin-like fraction with no concomitant increase in [14C]glycine label.  相似文献   

4.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

5.
In vitro synthesis of myelin proteolipid protein (PLP) was explored at different ages using rat brain total homogenates, incubated for 30 min with [3H]glycine. Total proteolipids, extracted from the incubated samples, were separated by SDSPAGE and the radioactivity was measured in the band corresponding to myelin PLP. The incorporation into PLP in relation to the incorporation into brain total proteins increased from 0.04% at 10 days of age to 0.63% at 20 days, and declined slowly thereafter. Time course experiments were carried out using brain homogenates obtained from rats of 20 days of age (i.e. at the period of maximal synthesis of PLP). Labeled PLP molecules were already found at 2.5 min of incubation and the incorporation of the label into this protein, relative to the incorporation into total proteins, did not vary throughout the entire incubation time (30 min). Pulsechase experiments using a similar system and adding cycloheximide at different incubation times showed that the appearance of label into mature PLP was immediately blocked by the inhibitor of protein synthesis. These data suggest that PLP is synthesized as such and not as a pre-protein which is subsequently processed to render mature PLP.  相似文献   

6.
Abstract— —The synthesis of myelin proteins has been studied in the grey and white matter slices of developing rat brain by measuring the incorporation of [3H]lysine and [14C]arginine into polypeptide. The incorporation was sensitive to cycloheximide and puromycin at 1 mM concentration. Developing rat optic nerve slices, free of retinal ganglion cells, were able to synthesize myelin basic and proteolipid proteins, but rat retinal preparation failed to synthesize myelin basic protein. Rabbit retinae were able to synthesize myelin basic and proteolipid proteins. Significant activity of the myelin marker enzyme 2',3'-cyclic nucleotide-2'-phosphodiesterase has been found in the rabbit retina but not in rat retina. The results presented in this communication suggest that myelin proteins in the rat CNS are synthesized by the oligodendroglial cells and that neurons probably do not participate.  相似文献   

7.
The incorporation of radioactive glycine into the major myelin proteolipid protein isolated from whole brain and from purified myelin of Quaking mice and normal littermates was compared. In a typical experiment, four Quaking mice and four littermate controls were injected intracranially with 250 μCi [2-3H]glycine and 25 μCi [U-14C]glycine respectively. Three hours later, the eight mice were killed and their brains combined. Equivalent portions were taken for (1) chloroform-methanol (2:1) extraction followed by ether precipitation of proteolipid from the brain and (2) myelin preparation. The 3H/14C ratios for the microsomes:, the major myelin proteolipid as well as the other non-myelin proteolipids extracted from whole brain was approx 3.0. while the 3H/14C ratio for proteolipid protein in myelin was near 0.4. These findings were consistent for ages studied between 18 and 90 days. The results indicate that the synthesis of the major myelin proteolipid protein in the whole brain of Quaking mouse, as seen previously in our studies on basic protein, proceeds at a normal rate relative to microsomes but its incorporation into myelin is depressed. A working hypothesis of myelin membrane assembly is presented to account for the defect in the incorporation of these proteins into Quaking myelin.  相似文献   

8.
Kinetics of Entry of P0 Protein into Peripheral Nerve Myelin   总被引:5,自引:5,他引:0  
Abstract: Sciatic nerves from 9-day-old rat pups were removed, sliced into 0.4-mm sections, and incubated with [3H]fucose or [14C]glycine precursors. The nerve slice system gave nearly linear incorporation of [3H]fucose as a function of time for 3 h, after an initial lag of ˜30 min for homogenate and ˜60 min for myelin. Incorporation of [3H]fucose at constant specific radioactivity was directly proportional to exogenous fucose levels over the range 3.0 × 10−8 m to 1.5 × 10−6 m . Analysis of labeled proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that greater than 50% of labeled glycoprotein was P0, with no other major constituents. This system was used in fucose-chase experiments to determine that a period of ˜20 min elapses between fucosylation and assembly of P0 into myelin. Cycloheximide inhibition of protein synthesis was used to determine that a period of ˜33 min elapses between protein synthesis and appearance of P0 myelin.  相似文献   

9.
ANOMALIES OF MYELIN-ASSOCIATED GLYCOPROTEINS IN''QUAKING MICE   总被引:6,自引:3,他引:3  
Abstract— Proteins and glycoproteins in a myelin fraction isolated from Quaking mutant mice were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and stained with Fast Green or with periodic acid-Schiff reagents. Double labelling experiments with [3H]fucose and [14C]fucose were also used to compare glycoproteins in myelin from the mutant mice with those from control mice. In the myelin fraction from the Quaking mice the basic proteins and proteolipid protein were decreased relative to the high molecular weight proteins. Some glycoproteins which are present in small amounts in myelin from normal mice were increased relative to the major glycoprotein in the myelin fraction of the Quaking mice. Furthermore, the major myelin-associated glycoprotein was shifted toward higher apparent molecular weight in comparison with controls of the same age or even with 9-day-old controls. The abnormal glycoproteins in the mutant myelin fraction could be a factor in the impairment of myelination.  相似文献   

10.
Abstract— Partially purified myelin from brains of 17-day-old rats was separated into 4 subfractions on a discontinuous sucrose gradient by virtue of heterogeneity in density and particle size. The protein composition of each subfraction was determined by densitometry following separation of proteins on polyacrylamide gels in buffers containing sodium dodecyl sulphate. The major proteins studied included two basic proteins, proteolipid protein, the major high molecular weight protein (W) and a group of high molecular weight proteins. The percentage of high molecular weight proteins decreased sequentially from fraction D to A, that of the W protein remained constant, while relative amounts of the two basic proteins increased. Proteolipid protein concentration also increased as a percentage of the total protein from fraction D to B, but the uppermost fraction. A, had a markedly lower amount than fraction B. At 1 h after intracranial injection of [3H]leucine, the specific radioactivity of the basic and proteolipid proteins decreased from fraction D to B, with proteolipid protein in fraction A again anomalous (specific radioactivity higher than expected). These results are consistent with (but do not prove) a precursor-product relationship for individual proteins from denser to lighter subfractions, with the exception of myelin subfraction A. Experiments involving time staggered injections of a [14C] and later a [3H] labelled amino acid gave data which demonstrated that the W and basic proteins were added simultaneously (or with delays of much less than 20 min) to all of the subfractions, while proteolipid protein was added sequentially, from lower to upper fractions on the gradient. This double isotope technique also confirmed our previous observations that proteolipid protein shows a lag in entry into myelin compared to basic protein.  相似文献   

11.
Brain slices prepared from 20-day old rats were incubated with [3H]palmitic acid to study its incorporation into myelin proteins. After separation by SDS-PAGE, most of the label was found to be associated with the major proteolipid protein (PLP) and with the intermediate protein (I). The radioactivity measured in PLP at short incubation times was shown to be due to palmitic acid bound to the protein by ester linkages. Time-course incorporation of [3H]palmitic acid into PLP of fraction SN4 (a myelin like membrane) and of purified myelin showed that the former was poorly labeled and no relationship of the type ‘precursor-product’ between these fractions could be detected. Incorporation of the fatty acid into PLP was not affected by inhibition of the synthesis or transport of myelin PLP with cycloheximide or colchicine, indicating that the pool of PLP that can be acylated must be larger than the extramyelin pool. Addition of unlabeled palmitic acid to the incubation medium, 30 min after the addition of [3H]palmitate, stopped the appearance of label in myelin PLP almost immediately, indicating that there is no significant extramyelin pool of PLP destined for transport into myelin. The results presented in this paper strongly suggest that esterification of PLP takes place in the myelin membrane or at a site very close to it.  相似文献   

12.
Isoprenylated Proteins in Myelin   总被引:1,自引:0,他引:1  
Abstract: Incubation of rat brainstem slices with [3H]- mevalonate ([3H]MVA) in the presence of lovastatin resulted in the incorporation of label into three groups of myelin-associated proteins with molecular masses of 47, 21–27, and 8 kDa, as revealed on sodium dodecyl sulfate- polyacrylamide rod gel electrophoresis. Although the gel patterns of [3H]MVA-derived prenylated proteins were similar, the relative level of 3H incorporated into each protein species differed between myelin and the brainstem homogenate. Immunoprecipitation studies identified the 47-kDa prenylated protein as a 2′-3′-cyclic nucleotide phospho- diesterase, whereas the 8-kDa protein proved to be the γ subunit of membrane-associated guanine nucleotide regulatory protein. The 3H-labeled 21–27-kDa group in myelin corresponds to the molecular mass of the extensive Ras- like family of monomeric GTP-binding proteins known to be prenylated in other tissues. Increase in lovastatin concentration resulted in reduced levels of [3H]MVA-labeled species in myelin and concomitantly increased levels in the cytosol. A cold MVA chase restored to normality the appearance of [3H]MVA-labeled proteins in myelin. Furthermore, a high lovastatin concentration in the brainstem slice incubation mixture altered the appearance of newly synthesized nonprenylated myelin proteins, including proteolipid protein and the 17-kDa subspecies of myelin basic protein. Because other myelin proteins were unaffected by the high lovastatin concentration, restricting the availability of MVA in myelin-forming cells may selectively alter processes required for myelinogenesis. Although the molecular basis for the” different MVA requirements in myelin- forming cells remains undefined, it may involve an alteration in the biological activity of certain proteins that require prenylation to be functionally active, and that are responsible for promoting insertion of specific proteins into the myelin membrane.  相似文献   

13.
Incorporation of [14C]leucine into the myelin sheath was studied in brain stem slices prepared from 22-day-old rats. Individual major myelin proteins were separated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. There was a time lag before incorporation of the label into proteolipid protein (PLP) and intermediate protein (IP) reached maximal rates. Labelling of basic proteins (BP) and Wolfgram proteins (WP) revealed a much shorter lag in entry. Appearance of radioactive proteins in the myelin sheath was significantly hampered by triethyllead (PbEt3) added to the incubation medium at micromolar concentrations. Inhibition values were highest in the case of PLP and were closely followed by the values for IP. BP and WP were less inhibited, although incorporation of these proteins into myelin was still suppressed more than was synthesis of total homogenate protein. Thus, myelin-forming cells seem to be unduly vulnerable to the toxin relative to the rest of the tissue. Furthermore, the results indicate an interference of PbEt3 with certain posttranslational processes involved in furnishing of integral myelin proteins.  相似文献   

14.
Abstract— Brain slices from 17 day rats were incubated with [3H]galactose and [35S]sulphate to label cerebroside and sulphatide. Myelin was isolated by centrifugation on a sucrose density gradient. Following lipid extraction and alkaline methanolysis, cerebroside and sulphatide were isolated by tic, and radioactivity was measured. Appearance of [3H]cerebroside and [3H]sulphatide in myelin showed a lag of less than 15min, while appearance of [35S]sulphatide in myelin showed a longer lag of about 30min. In chase experiments, the rate of appearance of [3H]cerebroside and [3SS]sulphatide in the non-myelin fraction and of [3H]cerebroside in the myelin fraction slowed markedly after the chase. In contrast, [35S]sulphatide continued to increase in myelin at a normal rate for 30min after the chase, then stopped, while 3H from galactose continued to accumulate in myelin sulphatides for 60 min. These data are interpreted to demonstrate an interval of 30 min between synthesis of cerebroside and its sulphation in the non-myelin fraction, and another delay of 30 min between sulphation and appearance in myelin. The distribution of newly synthesized cerebroside and sulphatide between myelin and non-myelin fractions also supported the concept that a complex metabolic pool of cerebroside in the non-myelin fraction is precursor to sulphatide of myelin. For comparison, entry of phosphatidyl choline and phosphatidyl ethanolamine into myelin was followed with [2-3H]glycerol as precursor. Like cerebroside, both phospholipids showed little delay in their initial appearance in myelin, and prompt cessation of their addition after a chase with unlabeled precursor. These results are consonant with either rapid entry of these three lipids into myelin after synthesis at an extra-myelin site, or synthesis of the lipids within myelin itself.  相似文献   

15.
EVIDENCE THAT THE MAJOR PROTEIN IN RAT SCIATIC NERVE MYELIN IS A GLYCOPROTEIN   总被引:24,自引:12,他引:12  
Evidence is presented that the major protein of rat sciatic nerve myelin is a glycoprotein. When myelin proteins were separated by polyacrylamide gel electrophoresis, the major band which was stained with amido black–Coomassie blue was also stained with periodic acid-Schiff reagents for carbohydrate. Radioactive labelling of myelin in vivo with [3H]leucine and [14C]fucose, followed by electrophoresis of the proteins, indicated that with both isotopes the major labelled peak corresponded to the major stained band. In addition, a second smaller peak of [14C]fucose migrated ahead of the major peak. Delipidated myelin contained galactose, mannose, fucose and sialic acid.  相似文献   

16.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

17.
Abstract— Diphtheria toxin (DT) did not produce measurable degradation of myelin proteins or sulphatide in sciatic nerves of chick embryos after incubation in vitro for 4 h. In contrast, DT inhibited the in vitro incorporation of L-[U-14C]leucine into myelin proteins by the nerves after a delay of 1 h. Separation of the myelin proteins by SDS-polyacrylamide gel electrophoresis indicated that the synthesis of Wolfgram proteins and proteins not entering the gel was inhibited by 21–22 per cent, whereas synthesis of myelin proteolipid and basic proteins was inhibited by 79–88 per cent. Incorporation of 35SO4 into myelin [35S]sulphatide was also inhibited by DT after a delay of 2 h. The inhibition of [35S]sulpha-tide incorporation into myelin caused by DT differed from that observed with puromycin in that it did not depend on depletion of an intracellular transport lipoprotein. Instead, the inhibition seemed to be secondary to the decreased synthesis of myelin proteolipid and basic proteins.  相似文献   

18.
—Purified myelin incorporated l -[14C]leucine and l -[14C]lysine into myelin proteins in an enzymatic process similar to that of renal brush border membranes. The system was not inhibited by cycloheximide or puromycin or by pretreatment with ribonuclease; the reaction was inhibited by cetophenicol. ATP was an effector, shifting the optimal pH from 7.2 to 8.3. In the presence of ATP, myelin was less dense in a sucrose gradient. Ammonia was released from the membrane during the incorporation of amino acids. Myelin preloaded with cold leucine did not incorporate [14C]leucine but did incorporate [14C]lysine; there was no cross inhibition between the two amino acids. The incorporation was into or onto proteins of the Wolfgram proteolipid fraction of myelin. The incorporation was of the high affinity type with a Km of 10?7m and was restricted to the natural amino acids.  相似文献   

19.
The incubation of sciatic nerve slices in Krebs Ringer bicarbonate (KRB) buffer (pH 7.4) at 37°C, or the incubation of freshly isolated myelin in ammonium bicarbonate buffer (pH 8), resulted in the generation of a 24kDa protein with a concomitant decrease of PO protein. The conversion of PO into 24kDa protein was blocked by heating isolated myelin at 100°C for 5 min suggesting that the reaction is enzyme mediated. Inclusion of the protease inhibitors and chelating agent to isolated myelin did not prevent the formation of 24kDa protein. Similarly, addition of CaCl2 to isolated myelin did not accentuate the formation of 24kDa protein suggesting that the conversion of PO into 24kDa protein may not be due to Ca2+ activated protease. It is postulated that the formation of 24kDa protein may be due to neutral protease and/or metalloproteinase associated with the PNS myelin. 24kDa protein was purified and characterized. The N-terminal sequence of 1–17 amino acid residues of 24kDa protein was identical to PO. 24kDa protein was immunostained and immunoprecipitated with anti-PO antiserum indicating the immunological similarities between PO and 24kDa protein. Labeling of 24kDa protein with [35S]methionine provided evidence that PO may be in all probability cleaved between Met-168 and Met-193. Further studies were carried out to demonstrate that 24kDa protein was phosphorylated, glycosylated and acylated like PO. Phosphorylation of 24kDa protein in the nerve slices was increased five-fold by phorbol esters and phosphoserine was the only phosphoamino acid identified after partial acid hydrolysis of 24kDa protein. These results suggested that serine residue phosphorylated by protein kinase C may be located in amino acid residues 1-168. 24kDa protein was stained with periodic Schiff reagent. In addition, 24kDa protein was fucosylated and the fucosylation of 24kDa protein was inhibited (70%) by tunicamycin, providing evidence that it is N-glycosylated. Recently, it was demonstrated that both PO and 24kDa protein were fatty acylated with [3H]palmitic acid in the nerve slices and fatty acids are covalently linked to these proteins (Agrawal, H.C. and Agrawal, D. 1989, Biochem. J. 263:173–177). The time course of inhibition of acylation by cycloheximide of 24kDa protein was identical to PO. Cycloheximide inhibited acylation of PO and 24kDa protein by 61% and 58% respectively, whereas, monensin had little affect on the fatty acylation of these proteins. Less [3H]palmitic acid and14C-amino acids were incorporated into 24kDa protein when compared to PO between 5–30 min after incubation of the nerve slices. However, more radioactivity was incorporated into 24kDa protein after 60 min when compared to PO under identical conditions. These results provided evidence of a precursor-product relationship between PO and 24kDa protein. Therefore, PO may be cleaved into 24kDa protein in the myelin membrane following its acylation and glycosylation in the Schwann cells.  相似文献   

20.
Both proteolipid proteins (PLP) and DM-20 were found to be present by the immunoblot technique in myelin isolated from quaking mouse brain; however, the relative concentration of these proteins in myelin from quaking brain was substantially reduced when compared to the control. Brain slices from littermate control and quaking mice were incubated with [3H]palmitic acid to determine the incorporation of fatty acid into myelin proteolipid proteins. Fluorography of gels containing myelin proteins from control and quaking mice brain revealed that both PLP and DM-20 were acylated. The incorporation of [3H]palmitic acid into quaking myelin PLP and DM-20 was reduced by 75% and 20% respectively of those in control brain. The significance of differential acylation of quaking myelin PLP and DM-20 is discussed with respect to availability of non-acylated pools of proteolipid proteins and the activities of acylating enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号