首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Y1250F/Y1251F mutant of the insulin-like growth factor I receptor (IGF-IR) has tyrosines 1250 and 1251 mutated to phenylalanines and is deficient in IGF-I-mediated suppression of apoptosis in FL5.12 lymphocytic cells. To address the mechanism of loss of function in this mutant we investigated signaling responses in FL5.12 cells overexpressing either a wild-type (WT) or Y1250F/Y1251F (mutant) IGF-IR. Cells expressing the mutant receptor were deficient in IGF-I-induced phosphorylation of the JNK pathway and had decreased ERK and p38 phosphorylation. IGF-I induced phosphorylation of Akt was comparable in WT and mutant expressing cells. The decreased activation of the mitogen-activated protein kinase (MAPK) pathways was accompanied by greatly decreased Ras activation in response to IGF-I. Although phosphorylation of Gab2 was similar in WT and mutant cell lines, phosphorylation of Shc on Tyr(313) in response to IGF-I was decreased in cells expressing the mutant receptor, as was recruitment of Grb2 and Ship to Shc. However, phosphorylation of Shc on Tyr(239), the Src phosphorylation site, was normal. A role for JNK in the survival of FL5.12 cells was supported by the observation that the JNK inhibitor SP600125 suppressed IGF-I-mediated protection from apoptosis. Altogether these data demonstrate that phosphorylation of Shc, and assembly of the Shc complex necessary for activation of Ras and the MAPK pathways are deficient in cells expressing the Y1250F/Y1251F mutant IGF-IR. This would explain the loss of IGF-I-mediated survival in FL5.12 cells expressing this mutant and may also explain why this mutant IGF-IR is deficient in functions associated with cellular transformation and cell migration in fibroblasts and epithelial tumor cells.  相似文献   

2.
Using a series of insulin-like growth factor I (IGF-I) receptor mutants, we have attempted to define domains required for transmitting the antiapoptotic signal from the receptor and to compare these domains with those required for mitogenesis or transformation. In FL5.12 cells transfected with wild-type IGF-I receptors, IGF-I affords protection from interleukin 3 withdrawal but is not mitogenic. An IGF-I receptor lacking a functional ATP binding site provided no protection from apoptosis. However, receptors mutated at tyrosine residue 950 or in the tyrosine cluster (1131, 1135, and 1136) within the kinase domain remained capable of suppressing apoptosis, although such mutations are known to inactivate transforming and mitogenic functions. In the C terminus of the IGF-I receptor, two mutations, one at tyrosine 1251 and one which replaced residues histidine 1293 and lysine 1294, abolished the antiapoptotic function, whereas mutation of the four serines at 1280 to 1283 did not. Interestingly, receptors truncated at the C terminus had enhanced antiapoptotic function. In Rat-1/ c-MycER fibroblasts, the Y950F mutant and the tyrosine cluster mutant could still provide protection from c-Myc-induced apoptosis, whereas mutant Y1250/1251F could not. These studies demonstrate that the domains of the IGF-I receptor required for its antiapoptotic function are distinct from those required for its proliferation or transformation functions and suggest that domains of the receptor required for inhibition of apoptosis are necessary but not sufficient for transformation.  相似文献   

3.
The scaffolding protein receptor for activated C kinase (RACK1) has been proposed to mediate the integration of insulin-like growth factor I receptor (IGF-IR) and adhesion signaling. Here we investigated the mechanism of this integration of signaling, by using an IGF-IR mutant (Y1250F/Y1251F) that is deficient in anti-apoptotic and transforming function. RACK1 was found to associate with the IGF-IR only in adherent cells and did not associate with the IGF-IR in nonadherent cells, lymphocytic cells, or cells expressing the Y1250F/Y1251F mutant. In R- cells transiently expressing the Y1250F/Y1251F mutant RACK1 became constitutively associated with beta1 integrin and did not associate with Shc, Src, or Shp2. This was accompanied by the loss of formation of a complex containing the IGF-IR, RACK1, and beta1 integrin; loss of migratory capacity; enhanced Src and FAK activity; enhanced Akt phosphorylation; and decreased p38 mitogen-activated protein kinase activity. Shc was not phosphorylated in response to IGF-I in cells expressing the Y1250F/Y1251F mutant and remained associated with protein phosphatase 2A. Similar alterations in signaling were observed in cells that were stimulated with IGF-I in nonadherent cultures. Our data suggest that disruption of RACK1 scaffolding function in cells expressing the Y1250F/Y1251F mutant results in the loss of adhesion signals that are necessary to regulate Akt activity and to promote turnover of focal adhesions and cell migration.  相似文献   

4.
The receptor for the type 1 insulin-like growth factor (IGF-I) regulates multiple cellular functions impacting on the metastatic phenotype of tumor cells, including cellular proliferation, anchorage-independent growth, survival, migration, synthesis of the 72-kDa type IV collagenase and invasion. We have used site-directed mutagenesis to generate domain-specific mutants of the receptor beta subunit to analyze the role of specific tyrosines in the regulation of the invasive/metastatic phenotype. Poorly invasive M-27 carcinoma cells expressing low receptor numbers were transfected with a plasmid vector expressing IGF-I receptor cDNA in which single or multiple tyrosine codons in the kinase domain, namely Tyr-1131, Tyr-1135, and Tyr-1136 or the C-terminal tyrosines 1250 and 1251 were substituted with phenylalanine. Changes in the invasive and metastatic properties were analyzed relative to M-27 cells expressing the wild type receptor. We found that cells expressing the Y1131F,Y1135F,Y1136F or Y1135F receptor mutants lost all IGF-IR-dependent functions and their phenotypes were indistinguishable from, or suppressed relative to, the parent line. The Y1250F,Y1251F substitution abolished anchorage-independent growth, cell spreading, and the anti-apoptotic effect of IGF-I whereas all other IGF-IR-dependent phenotypes were either unperturbed (i.e. mitogenicity) or only partially reduced (migration and invasion). The results identify three types of receptor-dependent functions in this model: those dependent only on an intact kinase domain (DNA synthesis), those dependent equally on kinase domain and Tyr-1250/1251 signaling (e.g. apoptosis, soft agar cloning) and those dependent on kinase domain and enhanced through Tyr-1250/1251 signaling (migration, invasion). They suggest that signals derived from both regions of the receptor cooperate to enhance tumor metastasis.  相似文献   

5.
Activation of the MAPK pathway mediates insulin-like growth factor-I (IGF-I)-dependent proliferation in vascular smooth muscle cells (SMC). Our previous studies have shown that IGF-I-induced Shc phosphorylation is necessary for sustained activation of MAPK and increased cell proliferation of SMCs, and both Shc and the tyrosine phosphatase SHP-2 must be recruited to the membrane protein SHPS-1 in order for Shc to be phosphorylated. These studies were undertaken to determine whether Src kinase activity is required to phosphorylate Shc in response to IGF-I in SMC and because SHP-2 binds to Src whether their interaction was also required for IGF-I-stimulated mitogenesis. Our results show that IGF-I induces activation of Src kinase and that is required for Shc phosphorylation and for optimal MAPK activation. We tested whether Shc is a substrate of c-Src in SMC by disrupting Src/Shc association using a peptide containing a YXXL (Tyr328) motif sequence derived from Src. The peptide blocked the binding of Src and Shc in vitro and in vivo. Cells expressing a mutant Src (Src-FF) that had Tyr328/Tyr358 substituted with phenylalanines (Src-FF) showed defective Src/Shc binding, impaired IGF-I-dependent Shc phorylation, and impaired mitogenesis. This supports the conclusion that Src phosphorylates Shc. IGF-I induced both Src/SHP-2 and Src/SHPS-1 association. SMCs expressing an SHP-2 mutant that had the polyproline-rich region of SH2 deleted (SHP-2Delta10) had disrupted SHP-2/Src association, impaired IGF-I-dependent Shc phosphorylation, and an attenuated mitogenic response. IGF-I-induced association of Src and SHPS-1 was also impaired in SHP-2Delata10-expressing cells, although SHP-2/SHPS-1 association was unaffected. Upon IGF-I stimulation, a complex assembles on SHPS-1 that contains SHP-2, c-Src, and Shc wherein Src phosphorylates Shc, a signaling step that is necessary for an optimal mitogenic response.  相似文献   

6.
7.
Available evidence suggests that insulin-like growth factor I receptor (IGF-IR) expression leads to increased cellular radioresistance. The most direct explanation of these findings predicts that IGF-IR is the source of survival signals in resistant cells. Mutational analysis revealed that protein truncated at amino acid 1245 in the C-terminus retained the ability of IGF-IR to confer radioresistance whereas point mutations at both Tyr-1250 and Tyr-1251 abrogated this effect using IGF-IR-deficient mouse embryo fibroblasts (R-) as a recipient. In cells expressing the latter mutant receptors, both phosphatidylinositol-3(') kinase (PI3-K) and mitogen-activated protein kinase (MAPK) signaling pathways remained intact, and addition of exogenous IGF-I could not change the radiosensitivity of these cells. Further analysis indicated that the abrogation of radioresistance required the presence of His-1293 and Lys-1294. These results suggest a novel regulatory role of the C-terminus of IGF-IR in mediating cellular radioresistance that may be independent of survival signals transmitted through this receptor.  相似文献   

8.
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.  相似文献   

9.
Overexpression of the ErbB2 receptor in one-third of human breast cancers contributes to the transformation of epithelial cells and predicts poor prognosis for breast cancer patients. We report that the overexpression of ErbB2 inhibits IGF-I-induced MAPK signaling. IGF-I-induced MAPK phosphorylation and MAPK kinase activity are reduced in ErbB2 overexpressing MCF-7/HER2-18 cells relative to control MCF-7/neo cells. In SKBR3/IGF-IR cells, reduction of ErbB2 by antisense methodology restores the IGF-I-induced MAPK activation. The inhibition of IGF-I-induced MAP kinase activation in ErbB2 overexpressing breast cancer cells is correlated with decreased IGF-I-induced Shc tyrosine-phosphorylation, leading to a decreased association of Grb2 with Shc and decreased Raf phosphorylation. However, IGF-I-induced tyrosine-phosphorylation of IGF-I receptor and IRS-I and AKT phosphorylation were unaffected by ErbB2 overexpression. Consistent with these results, we observed that the proportion of IGF-I-stimulated proliferation blocked by the MAPK inhibitor PD98059 fell from 82.6% in MCF-7/neo cells to 41.2% in MCF-7/HER2-18 cells. These data provide evidence for interplay between the IGF-IR and ErbB2 signaling pathways. They are consistent with the view that the IGF-IR mediated attenuation of trastuzumab-induced growth inhibition we recently described is dependent on IGF-I-induced PI3K signaling rather than IGF-I-induced MAPK signaling.  相似文献   

10.
Insulin-like growth factor I (IGF-I) stimulates smooth muscle cell (SMC) proliferation, and the mitogen-activated protein kinase (MAPK) pathway plays an important role in mediating IGF-I-induced mitogenic signaling. Our prior studies have shown that recruitment of Src homology 2 domain tyrosine phosphatase (SHP-2) to the membrane scaffolding protein Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) is required for IGF-I-dependent MAPK activation. The current studies were undertaken to define the upstream signaling components that are required for IGF-I-stimulated MAPK activation and the role of SHPS-1 in regulating this process. The results show that IGF-I-induced Shc phosphorylation and its subsequent binding to Grb2 is required for sustained phosphorylation of MAPK and increased cell proliferation in SMCs. Furthermore, for Shc to be phosphorylated in response to IGF-I requires that Shc must associate with SHPS-1 and this association is mediated in part by SHP-2. Preincubation of cells with a peptide that contains a phospho-tyrosine binding motif sequence derived from SHPS-1 inhibited IGF-I-stimulated SHP-2 transfer to SHPS-1, the association of Shc with SHPS-1, and IGF-I-dependent Shc phosphorylation. Expression of an SHPS-1 mutant that did not bind to Shc or SHP-2 resulted in decreased Shc and MAPK phosphorylation in response to IGF-I. In addition, SMCs expressing a mutant form of the beta3 subunit of the alphaVbeta3, which results in impairment of SHP-2 transfer to SHPS-1, also showed attenuated IGF-I-dependent Shc and MAPK phosphorylation. Further analysis showed that Shc and SHP-2 can be coimmunoprecipitated after IGF-I stimulation. A cell-permeable peptide that contained a polyproline sequence from Shc selectively inhibited Shc/SHP-2 association and impaired Shc but not SHP-2 binding to SHPS-1. Exposure to this peptide also inhibited IGF-I-stimulated Shc and MAPK phosphorylation. Cells expressing a mutant form of Shc with the four prolines substituted with alanines showed no Shc/SHPS-1 association in response to IGF-I. We conclude that SHPS-1 functions as an anchor protein that recruits both Shc and SHP-2 and that their recruitment is necessary for IGF-I-dependent Shc phosphorylation, which is required for an optimal mitogenic response in SMCs.  相似文献   

11.
Transforming growth factor beta 1 (TGF-beta 1) and insulin-like growth factor I (IGF-I) have contrasting effects on cell cycle regulation in thyroid cells and TGF-beta 1 induces a dramatic decrease in IGF-I-induced cell proliferation. The aim of the present study was to investigate the molecular mechanism of cross-talk between TGF-beta 1 and IGF-I in FRTL-5 cells. TGF-beta 1 affected IGF-I-stimulated insulin receptor substrate 1 (IRS-1) tyrosine phosphorylation and its association with Grb2 protein. Moreover, TGF-beta 1 decreased the IGF-I-induced tyrosine phosphorylation of the adaptor protein CrkII and its association with the IGF-I receptor. These results were accompanied by TGF-beta 1 inhibition of IGF-I-stimulated mitogen-activated protein kinase phosphorylation and activation. Conversely, TGF-beta 1 did not alter IGF-I-stimulated IRS-1-associated phosphatidylinositol 3-kinase activity, IGF-I-induced tyrosine phosphorylation of Shc, and its binding to Grb2. Taken together, these findings provide a molecular basis for the growth-inhibitory action of TGF-beta 1 on the IGF-I-induced mitogenic effect.  相似文献   

12.
The insulin-like growth factor I (IGF-I) receptor (IGF-IR) is known to regulate a variety of cellular processes including cell proliferation, cell survival, cell differentiation, and cell transformation. IRS-1 and Shc, substrates of the IGF-IR, are known to mediate IGF-IR signaling pathways such as those of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K), which are believed to play important roles in some of the IGF-IR-dependent biological functions. We used the cytoplasmic domain of IGF-IR in a yeast two-hybrid interaction trap to identify IGF-IR-interacting molecules that may potentially mediate IGF-IR-regulated functions. We identified RACK1, a WD repeat family member and a Gbeta homologue, and demonstrated that RACK1 interacts with the IGF-IR but not with the closely related insulin receptor (IR). In several types of mammalian cells, RACK1 interacted with IGF-IR, protein kinase C, and beta1 integrin in response to IGF-I and phorbol 12-myristate 13-acetate stimulation. Whereas most of RACK1 resides in the cytoskeletal compartment of the cytoplasm, transformation of fibroblasts and epithelial cells by v-Src, oncogenic IR or oncogenic IGF-IR, but not by Ros or Ras, resulted in a significantly increased association of RACK1 with the membrane. We examined the role of RACK1 in IGF-IR-mediated functions by stably overexpressing RACK1 in NIH 3T3 cells that expressed an elevated level of IGF-IR. RACK1 overexpression resulted in reduced IGF-I-induced cell growth in both anchorage-dependent and anchorage-independent conditions. Overexpression of RACK1 also led to enhanced cell spreading, increased stress fibers, and increased focal adhesions, which were accompanied by increased tyrosine phosphorylation of focal adhesion kinase and paxillin. While IGF-I-induced activation of IRS-1, Shc, PI3K, and MAPK pathways was unaffected, IGF-I-inducible beta1 integrin-associated kinase activity and association of Crk with p130(CAS) were significantly inhibited by RACK1 overexpression. In RACK1-overexpressing cells, delayed cell cycle progression in G(1) or G(1)/S was correlated with retinoblastoma protein hypophophorylation, increased levels of p21(Cip1/WAF1) and p27(Kip1), and reduced IGF-I-inducible Cdk2 activity. Reduction of RACK1 protein expression by antisense oligonucleotides prevented cell spreading and suppressed IGF-I-dependent monolayer growth. Our data suggest that RACK1 is a novel IGF-IR signaling molecule that functions as a positive mediator of cell spreading and contact with extracellular matrix, possibly through a novel IGF-IR signaling pathway involving integrin and focal adhesion signaling molecules.  相似文献   

13.
We have recently characterized a mutant insulin receptor (Y/F2) in which the two tyrosines in the carboxyl terminus (Tyr1316, Tyr1322) were mutated to phenylalanine. Compared with wild type receptors, the Y/F2 receptor exhibited markedly enhanced sensitivity to insulin-stimulated DNA synthesis with normal insulin-stimulated glucose uptake (Takata, Y., Webster, N. J. G., and Olefsky, J. M. (1991) J. Biol. Chem. 266, 9135-9139). In this paper, we present further evidence for the divergence of the metabolic and mitogenic signaling pathways utilized by the insulin receptor. The mutant receptor showed normal sensitivity and responsiveness for insulin-stimulated glucose incorporation into glycogen. The insulin sensitivity for phosphorylation of two substrates (pp180 and pp220) was the same in both Y/F2 cells and HIRc cells. Phosphotyrosine content, however, was greater in Y/F2 cells than in HIRc cells, especially in the basal state. Insulin stimulated S6 kinase activity 2-6-fold, with an ED50 of -10 nM in Rat 1 cells and 0.5 nM in HIRc cells. The sensitivity to insulin was enhanced in Y/F2 cells with an ED50 of 0.1 nM. These effects were insulin-specific, since insulin-like growth factor (IGF)-I-stimulated mitogenesis was normal. In summary: 1) Y/F2 receptors exhibit normal metabolic and enhanced mitogenic signaling; 2) the enhanced mitogenic signaling is specific for the insulin receptor in the Y/F2 cells, since IGF-I-stimulated mitogenesis is normal; 3) Y/F2 cells display increased endogenous substrate phosphorylation and augmented insulin-stimulated S6 kinase activity placing these responses among insulin's mitogenic effects; and 4) these results are consistent with the concept that the COOH-terminal tyrosine residues of the insulin receptor are normally inhibitory to mitogenic signaling.  相似文献   

14.
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.  相似文献   

15.
We examined the role of heterotrimeric G protein signaling components in insulin and insulin-like growth factor I (IGF-I) action. In HIRcB cells and in 3T3L1 adipocytes, treatment with the Galpha(i) inhibitor (pertussis toxin) or microinjection of the Gbetagamma inhibitor (glutathione S-transferase-betaARK) inhibited IGF-I and lysophosphatidic acid-stimulated mitogenesis but had no effect on epidermal growth factor (EGF) or insulin action. In basal state, Galpha(i) and Gbeta were associated with the IGF-I receptor (IGF-IR), and after ligand stimulation the association of IGF-IR with Galpha(i) increased concomitantly with a decrease in Gbeta association. No association of Galpha(i) was found with either the insulin or EGF receptor. Microinjection of anti-beta-arrestin-1 antibody specifically inhibited IGF-I mitogenic action but had no effect on EGF or insulin action. beta-Arrestin-1 was associated with the receptors for IGF-I, insulin, and EGF in a ligand-dependent manner. We demonstrated that Galpha(i), betagamma subunits, and beta-arrestin-1 all play a critical role in IGF-I mitogenic signaling. In contrast, neither metabolic, such as GLUT4 translocation, nor mitogenic signaling by insulin is dependent on these protein components. These results suggest that insulin receptors and IGF-IRs can function as G protein-coupled receptors and engage different G protein partners for downstream signaling.  相似文献   

16.
Epidermal growth factor (EGF) induces tyrosine phosphorylation of the Shc adapter protein, which plays an important role in EGF-stimulated mitogenesis. Shc stimulates Ras/mitogen-activated protein kinase (MAPK) through forming a complex with Grb2 at the phosphorylated tyrosine (Y) residue 317. In this study, we identified novel phosphorylation sites of Shc, at Y239 and Y240. To define the Shc pathway further, we used NIH 3T3 cells expressing the previously characterized mutant EGF receptor (EGF-R) which lacks all known autophosphorylation sites but retains EGF-stimulated mitogenesis with selective phosphorylation of Shc. We constructed wild-type (WT) or mutant Shc cDNAs in which Y317 or/and Y239 and Y240 are replaced with phenylalanine (F) and introduced them into NIH 3T3 cells expressing WT or mutant EGF-R. In the WT EGF-R-expressing cells, the Y239/240/317F Shc, but not Y317F or Y239/240F Shc, decreased EGF-stimulated cell growth. In the mutant EGF-R-expressing cells, Y317F Shc or Y239/240F Shc decreased EGF-stimulated cell growth significantly, though Y317F was a little more potent than Y239/240F. Although cells expressing the Y317F Shc hardly activated MAPK in response to EGF, cells expressing the Y239/240F Shc fully activated MAPK. In contrast, Y239/240F Shc, but not Y317F Shc, reduced the EGF-induced c-myc message. These results suggest that Shc activates two distinct signaling pathways, Y317 to Ras/MAPK and Y239 and Y240 to another pathway including Myc, and that both are involved in EGF-induced mitogenic signaling.  相似文献   

17.
This study tested the hypothesis that shear stress interacts with the insulin-like growth factor-I (IGF-I) pathway to stimulate osteoblast proliferation. Human TE85 osteosarcoma cells were subjected to a steady shear stress of 20 dynes/cm(2) for 30 min followed by 24-h incubation with IGF-I (0-50 ng/ml). IGF-I increased proliferation dose-dependently (1.5-2.5-fold). Shear stress alone increased proliferation by 70%. The combination of shear stress and IGF-I stimulated proliferation (3.5- to 5.5-fold) much greater than the additive effects of each treatment alone, indicating a synergistic interaction. IGF-I dose-dependently increased the phosphorylation level of Erk1/2 by 1.2-5.3-fold and that of IGF-I receptor (IGF-IR) by 2-4-fold. Shear stress alone increased Erk1/2 and IGF-IR phosphorylation by 2-fold each. The combination treatment also resulted in synergistic enhancements in both Erk1/2 and IGF-IR phosphorylation (up to 12- and 8-fold, respectively). Shear stress altered IGF-IR binding only slightly, suggesting that the synergy occurred primarily at the post-ligand binding level. Recent studies have implicated a role for integrin in the regulation of IGF-IR phosphorylation and IGF-I signaling. To test whether the synergy involves integrin-dependent mechanisms, the effect of echistatin (a disintegrin) on proliferation in response to shear stress +/- IGF-I was measured. Echistatin reduced basal proliferation by approximately 60% and the shear stress-induced mitogenic response by approximately 20%. It completely abolished the mitogenic effect of IGF-I and that of the combination treatment. Shear stress also significantly reduced the amounts of co-immunoprecipitated SHP-2 and -1 with IGF-IR, suggesting that the synergy between shear stress and IGF-I in osteoblast proliferation involves integrin-dependent recruitment of SHP-2 and -1 away from IGF-IR.  相似文献   

18.
19.
The tyrosine kinase activity of insulin-like growth factor I receptor (IGF1R) is under tight control. Ligand binding to the extracellular portion of IGF1R stimulates autophosphorylation at three sites (Tyr1131, Tyr1135, and Tyr1136) in the activation loop within the tyrosine kinase catalytic domain. Autophosphorylation at all three sites is required for maximum enzyme activity, and for IGF1-stimulated cellular activity of the receptor. Previous studies have not clarified the contributions of the individual tyrosines to enzymatic activation. Here, we produced single Tyr-to-Phe mutations at these positions, and compared activities of the purified kinase domains (unphosphorylated and phosphorylated) with wild-type IGF1R. Rates of autophosphorylation of the three mutants were more rapid than for wild-type IGF1R; this was most apparent for the Y1135F mutant. Substrate phosphorylation studies on the unphosphorylated forms of IGF1R confirmed that the value of Vmax for Y1135F was elevated relative to wild-type IGF1R, consistent with a disruption of an autoinhibitory interaction. In contrast, activity measurements on the fully phosphorylated enzymes indicated that kcat/Km values were lowered relative to wild-type IGF1R; this effect was most dramatic for Y1136F. We confirmed these findings using limited proteolysis and tryptophan fluorescence experiments. The results demonstrate that Tyr1135 plays a particularly important role in stabilizing the autoinhibited conformation of the activation loop, while Tyr1136 plays the key role in stabilizing the open, activated conformation of IGF1R.  相似文献   

20.
The type 1 receptor for insulin-like growth factors (IGF-IR) plays an important role in the growth and transformation of several types of cells. We have investigated the role of IGF-IR number in IGF-I-mediated mitogenesis and transformation of mouse embryo fibroblasts. We have used Rcells (3T3-like cells originating from mouse embryos with a targeted disruption of the IGF-IR genes) transfected with a plasmid expressing the human IGF-IR cDNA to generate clones with receptor numbers ranging from zero to 106receptors per cell. In this model, between 15,000 and 22,000 receptors per cell are sufficient to render mouse embryo cells competent to grow in serum-free medium supplemented solely with IGF-I. For growth in soft agar, 30,000 receptors per cell seem to be the minimum requirement. These experiments indicate that a small increment in the number of receptors per cell, well within the physiological range, can modulate the mitogenic and transforming activities of the IGF-IR in 3T3-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号