首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
蛋白质超二级结构预测是三级结构预测的一个非常重要的中间步骤。本文从蛋白质的一级序列出发,对5793个蛋白质中的四类简单超二级结构进行预测,以位点氨基酸为参数,采用3种片段截取方式,分别用离散增量算法预测的结果不理想,将组合的离散增量值作为特征参数输入支持向量机,取得了较好的预测结果,5交叉检验的平均预测总精度达到83.0%,Matthew’s相关系数在0.71以上。  相似文献   

2.
用人工神经网络方法预测蛋白质超二级结构   总被引:10,自引:0,他引:10       下载免费PDF全文
蛋白质超二级结构,即由α-螺旋和β-折叠等二级结构单元和连接短肽组成的超二级结构,是蛋白质结构研究中的一个重要层次。目前蛋白质超二级结构的预测工作尚属摸索阶段,还没有成熟的方法。人工神经网络预测方法是近年来在二级结构预测中发展起来的新方法。本文成功的将人工神经网络引入蛋白质超二级结构的预测工作中,结果表明蛋白质的超二级结构的发生与其局域的氨基酸的序列模式有重要联系,可以由蛋白质的一级结构序列预测该  相似文献   

3.
用离散量预测蛋白质的结构型   总被引:12,自引:2,他引:12       下载免费PDF全文
基于蛋白质的结构类型决定了它的二级结构序列的概念,用二级结构序列参数Nα,Nβ,Nβaβ,N(βαβ)构成离散源,并计算离散量D(Xα),D(Xβ),D(Xα+β),利用离散增量预测蛋白质的结构类型,它是由这个蛋白质的离散量D(Xn)与四个标准离散D(Xα),D(Xβ),D(Xα/β),D(Xα+β)之间离散增量的最小值所决定的,预测结果表明,准确率分别达到84.8%(标准集)和83.3%(检验集)。  相似文献   

4.
近年来关于蛋白质超二级结构(supersecondary motifs,Motifs)的研究已成为国际上一个热点课题,国内也开始出现有关的研究论文,蛋白质超二级结构是两个或几个规则二级结构单元的进一步组合,或看成是二级结构的局域折叠.文章就蛋白质Motifs结构的定义,特点,及对这一结构层次开展研究的意义作了综述,并对蛋白质Motifs研究的进展作了简要的介绍.  相似文献   

5.
曹晨  马堃 《生物信息学》2016,14(3):181-187
蛋白质二级结构是指蛋白质骨架结构中有规律重复的构象。由蛋白质原子坐标正确地指定蛋白质二级结构是分析蛋白质结构与功能的基础,二级结构的指定对于蛋白质分类、蛋白质功能模体的发现以及理解蛋白质折叠机制有着重要的作用。并且蛋白质二级结构信息广泛应用到蛋白质分子可视化、蛋白质比对以及蛋白质结构预测中。目前有超过20种蛋白质二级结构指定方法,这些方法大体可以分为两大类:基于氢键和基于几何,不同方法指定结果之间的差异较大。由于尚没有蛋白质二级结构指定方法的综述文献,因此,本文主要介绍和总结已有蛋白质二级结构指定方法。  相似文献   

6.
神经网络在蛋白质二级结构预测中的应用   总被引:3,自引:0,他引:3  
介绍了蛋白质二级结构预测的研究意义,讨论了用在蛋白质二级结构预测方面的神经网络设计问题,并且较详尽地评述了近些年来用神经网络方法在蛋白质二级结构预测中的主要工作进展情况,展望了蛋白质结构预测的前景。  相似文献   

7.
目前评价蛋白质二级结构预测方法主要考虑预测准确率,并没有充分考虑方法自身参数对方法的影响。本文提出一种新型评价方法,将内在评价与外在评价相结合评价预测方法的优劣。以基于混合并行遗传算法的蛋白质二级结构预测方法为例,通过内在评价,合理选取内在参数——切片长度和组内类别数,有效提高预测准确率,同时,通过外在评价,与其他基于随机算法的蛋白质二级结构预测算法比较和与CASP所提供的结论比较,说明了方法的有效性与正确性,以此验证内在评价和外在评价的客观性、公正性和全面性。  相似文献   

8.
目前蛋白质二级结构的预测准确率徘徊在75%左右,难以作进一步提高。本文通过统计学的方法,对蛋白质的冗余数据库进行了分析。并由此证明,目前影响预测准确率继续的真正原因是蛋白质数据库本身的系统误差,系统误差大约为25%。而该误差是由于实验条件的客观原因带来的。  相似文献   

9.
提出了一种新的蛋白质二级结构预测方法. 该方法从氨基酸序列中提取出和自然语言中的“词”类似的与物种相关的蛋白质二级结构词条, 这些词条形成了蛋白质二级结构词典, 该词典描述了氨基酸序列和蛋白质二级结构之间的关系. 预测蛋白质二级结构的过程和自然语言中的分词和词性标注一体化的过程类似. 该方法把词条序列看成是马尔科夫链, 通过Viterbi算法搜索每个词条被标注为某种二级结构类型的最大概率, 其中使用词网格描述分词的结果, 使用最大熵马尔科夫模型计算词条的二级结构概率. 蛋白质二级结构预测的结果是最优的分词所对应的二级结构类型. 在4个物种的蛋白质序列上对这种方法进行测试, 并和PHD方法进行比较. 试验结果显示, 这种方法的Q3准确率比PHD方法高3.9%, SOV准确率比PHD方法高4.6%. 结合BLAST搜索的局部相似的序列可以进一步提高预测的准确率. 在50个CASP5目标蛋白质序列上进行测试的结果是: Q3准确率为78.9%, SOV准确率为77.1%. 基于这种方法建立了一个蛋白质二级结构预测的服务器, 可以通过http://www.insun.hit.edu.cn:81/demos/biology/index.html来访问.  相似文献   

10.
蛋白质二级结构预测是蛋白质结构研究的一个重要环节,大量的新预测方法被提出的同时,也不断有新的蛋白质二级结构预测服务器出现。试验选取7种目前常用的蛋白质二级结构预测服务器:PSRSM、SPOT-1D、MUFOLD、Spider3、RaptorX,Psipred和Jpred4,对它们进行了使用方法的介绍和预测效果的评估。随机选取了PDB在2018年8月至11月份发布的180条蛋白质作为测试集,评估角度为:Q3、Sov、边界识别率、内部识别率、转角C识别率,折叠E识别率和螺旋H识别率七种角度。上述服务器180条测试数据的Q3结果分别为:89.96%、88.18%、86.74%、85.77%、83.61%,79.72%和78.29%。结果表明PSRSM的预测结果最好。180条测试集中,以同源性30%,40%,70%分类的实验结果中,PSRSM的Q3结果分别为:89.49%、90.53%、89.87%,均优于其他服务器。实验结果表明,蛋白质二级结构预测可从结合多种深度学习方法以及使用大数据训练模型方向做进一步的研究。  相似文献   

11.
蛋白质亚细胞定位的识别   总被引:3,自引:2,他引:3       下载免费PDF全文
根据蛋白质的亚细胞定位,将蛋白质分为12类,用离散量的数学理论,以蛋白质中400个氨基酸二联体数目构成离散源,通过计算离散增量预测蛋白质的亚细胞定位,用Self-consistency和Jackknife两种方法测试均获得较高的预测成功率。结果表明:Self-consistency方法预测成功率为84.5%,Jackknife方法预测成功率为81.1%。  相似文献   

12.
根据凋亡蛋白的亚细胞位置主要决定于它的氨基酸序列这一观点,基于局部氨基酸序列的n肽组分和序列的亲疏水性分布信息,采用离散增量结合支持向量机(ID_SVM)算法,对六类细胞凋亡蛋白的亚细胞位置进行预测。结果表明,在Re-substitution检验和Jackknife检验下,ID_SVM算法的总体预测成功率分别达到了94.6%和84.2%;在5-fold检验和10-fold检验下,其总体预测成功率也都达到了83%以上。通过比较ID和ID_SVM两种方法的预测能力发现,结合了支持向量机的离散增量算法能够改进预测成功率,结果表明ID_SVM是预测凋亡蛋白亚细胞位置的一种很有效的方法。  相似文献   

13.
统计了大肠杆菌sigma70启动子在不同基因间的分布。计算了683条大肠杆菌sigma70启动子的每个位点六联体的保守性M6(l)值及涨落限,以大于涨落限7.2的21个保守位点的六联体频数作为参数,利用离散增量理论对大肠杆菌全序列进行启动子搜索。结果显示683条启动子序列被全部正确预测且得到126条预测序列,利用启动子在不同基因间的分布和TSS到TIS的距离分布进行二次筛选,推测其中的84条序列是实验未测定的启动子序列。  相似文献   

14.
基于蛋白质序列组分信息,提出一个离散增量结合二次判别分析法(IDQD)预测蛋白质相互作用的模型,对人类蛋白质相互作用进行预测.自洽检验的识别精度达到75.89%,3-fold交叉检验的敏感性和特异性分别为64.22%和64.68%.结果表明IDQD算法可以用于蛋白质相互作用的预测.  相似文献   

15.
高文  谢从华 《西北植物学报》2013,33(12):2558-2566
Rab蛋白是小G蛋白超级家族中的成员之一。通过Rab蛋白氨基酸序列的系统进化分析表明,植物Rab家族又可分为8个亚家族,分别为RabA、RabB、RabC、RabD、RabE、RabF、RabG和RabH。Rab蛋白一般位于胞内特异膜系统的胞质面,它们是小泡运输的关键调节因子。Rab蛋白有非常保守的结构域,同时又具有功能多样性,它们在细胞分化、顶端优势、花粉管发育、根瘤形成以及生物和非生物胁迫反应中均起着非常重要的作用。该文对近年来国内外有关植物Rab蛋白的结构特点及其多样性功能的研究进展进行综述。  相似文献   

16.
基于蛋白质序列,提出了一种新的超二级结构模体β-发夹的预测方法。利用离散增量构成的向量来表示序列信息,并将6个离散增量输入支持向量机,在六维向量空间中寻找最优超平面,将β-发夹和非β-发夹进行分类。计算结果表明,利用所设计的算法预测β-发夹,有较高的预测能力。对于训练集,5-交叉检验的预测总精度为81.24%,相关系数为0.57,β-发夹敏感性为83.06%;对于独立的检验集,预测总精度为78.34%,相关系数0.56,β-发夹敏感性为77.24%。将此预测模型应用于CASP6的63个蛋白质进行检验,得到较好结果。  相似文献   

17.
信使RNA的可变剪接是真核生物有别于原核生物的基本特征之一,信使RNA前体的可变剪接极大地丰富了高等真核生物蛋白质的多样性,并与生物体的组织特异性密切相关。文章对人类盒式外显子和内含子保留的一些基本特征进行了统计;根据剪接位点附近的单碱基、碱基二联体和三联体的保守性等特征,利用基于多样性指标的二次判别法,对盒式外显子和内含子保留的供体端和受体端可变剪接位点进行了预测。交叉检验结果表明,盒式外显子供体端和受体端的识别精度分别达到93%、84%以上的水平;内含子保留供体端和受体端的识别精度分别达到89%、81%以上的水平。  相似文献   

18.
The conotoxin proteins are disulfide rich small peptides that target ion channels and G protein coupled receptors. And they provide promising application in treating some chronic pain, epilepsy, cardiovascular diseases, and so on. Conotoxins may be classified into 11 superfamilies: A, D, I1, I2, J, L, M, O, P, S, and T according to the disulfide connectivity, highly conserved N-terminal precursor sequence and similar mode of actions. Successful prediction mature conotoxin superfamily peptide has important signification for the biological and pharmacological functions of the toxins. In this study, a new algorithm of increment of diversity combined with modified Mahalanobis discriminant is presented to predict five superfamilies by using the pseudo amino acid composition. The results of jackknife cross-validation test show that the overall prediction sensitivity and specificity are 88% and 91%, respectively. The predictive algorithm is also used to predict three O-conotoxin families. The 72% sensitivity and 78% specificity are obtained. These results indicate that the conotoxin superfamily peptides correlate with their amino acid compositions.  相似文献   

19.
林昊 《生物信息学》2009,7(4):252-254
由于蛋白质亚细胞位置与其一级序列存在很强的相关性,利用多样性增量来描述蛋白质之间氨基酸组分和二肽组分的相似程度,采用修正的马氏判别式(这里称为IDQD方法)对分枝杆菌蛋白质的亚细胞位置进行了预测。利用Jackknife检验对不同序列相似度下的蛋白质数据集进行了预测研究,结果显示,当数据集的序列相似度小于等于70%时,算法的预测精度稳定在75%左右。在对整体852条蛋白质的预测成功率达到87.7%,这一结果优于已有算法的预测精度,说明IDQD是一种有效的分枝杆菌蛋白质亚细胞预测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号