首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chloroplast (nuclear-encoded) RNA-binding protein (28RNP) was previously purified from spinach (Spinacia oleracea). This 28RNP was found to be the major RNA-binding protein co-purified during the isolation scheme of 3[prime] end RNA-processing activity of several chloroplastic genes. To learn more about the possible involvement of 28RNP in the 3[prime] end RNA-processing event, we investigated the RNA-binding properties and the location of the protein in the chloroplast. We found that recombinant Escherichia coliexpressed 28RNP binds with apparently the same affinity to every chloroplastic 3[prime] end RNA that was analyzed, as well as to RNAs derived from the 5[prime] end or the coding region of some chloroplastic genes. Differences in the RNA-binding affinities for some chloroplastic 3[prime] end RNAs were observed when the recombinant 28RNP was compared with the "native" 28RNP in the chloroplast-soluble protein extract. In addition, we found that the 28RNP is not associated with either thylakoid-bound or soluble polysomes in which a great portion of the chloroplast rRNA and mRNA are localized. These results suggest that the native 28RNP binds specifically to certain RNA molecules in the chloroplast in which other components (possibly proteins) and/or posttranslational modifications are involved in determining RNA-binding specificity of the 28RNP.  相似文献   

2.
LRP130 (also known as LRPPRC) is an RNA-binding protein that is a constituent of postsplicing nuclear RNP complexes associated with mature mRNA. It belongs to a growing family of pentatricopeptide repeat (PPR) motif-containing proteins, several of which have been implicated in organellar RNA metabolism. We show here that only a fraction of LRP130 proteins are in nuclei and are directly bound in vivo to at least some of the same RNA molecules as the nucleocytoplasmic shuttle protein hnRNP A1. The majority of LRP130 proteins are located within mitochondria, where they are directly bound to polyadenylated RNAs in vivo. In vitro, LRP130 binds preferentially to polypyrimidines. This RNA-binding activity maps to a domain in its C-terminal region that does not contain any previously described RNA-binding motifs and that contains only 2 of the 11 predicted PPR motifs. Therefore, LRP130 is a novel type of RNA-binding protein that associates with both nuclear and mitochondrial mRNAs and as such is a potential candidate for coordinating nuclear and mitochondrial gene expression. These findings provide the first identification of a mammalian protein directly bound to mitochondrial RNA in vivo and provide a possible molecular explanation for the recently described association of mutations in LRP130 with cytochrome c oxidase deficiency in humans.  相似文献   

3.
Tran EJ  Zhang X  Maxwell ES 《The EMBO journal》2003,22(15):3930-3940
Box C/D ribonucleoprotein (RNP) complexes direct the nucleotide-specific 2'-O-methylation of ribonucleotide sugars in target RNAs. In vitro assembly of an archaeal box C/D sRNP using recombinant core proteins L7, Nop56/58 and fibrillarin has yielded an RNA:protein enzyme that guides methylation from both the terminal box C/D core and internal C'/D' RNP complexes. Reconstitution of sRNP complexes containing only box C/D or C'/D' motifs has demonstrated that the terminal box C/D RNP is the minimal methylation-competent particle. However, efficient ribonucleotide 2'-O-methylation requires that both the box C/D and C'/D' RNPs function within the full-length sRNA molecule. In contrast to the eukaryotic snoRNP complex, where the core proteins are distributed asymmetrically on the box C/D and C'/D' motifs, all three archaeal core proteins bind both motifs symmetrically. This difference in core protein distribution is a result of altered RNA-binding capabilities of the archaeal and eukaryotic core protein homologs. Thus, evolution of the box C/D nucleotide modification complex has resulted in structurally distinct archaeal and eukaryotic RNP particles.  相似文献   

4.
RNA targets of multitargeted RNA-binding proteins (RBPs) can be studied by various methods including mobility shift assays, iterative in vitro selection techniques and computational approaches. These techniques, however, cannot be used to identify the cellular context within which mRNAs associate, nor can they be used to elucidate the dynamic composition of RNAs in ribonucleoprotein (RNP) complexes in response to physiological stimuli. But by combining biochemical and genomics procedures to isolate and identify RNAs associated with RNA-binding proteins, information regarding RNA-protein and RNA-RNA interactions can be examined more directly within a cellular context. Several protocols--including the yeast three-hybrid system and immunoprecipitations that use physical or chemical cross-linking--have been developed to address this issue. Cross-linking procedures in general, however, are limited by inefficiency and sequence biases. The approach outlined here, termed RNP immunoprecipitation-microarray (RIP-Chip), allows the identification of discrete subsets of RNAs associated with multi-targeted RNA-binding proteins and provides information regarding changes in the intracellular composition of mRNPs in response to physical, chemical or developmental inducements of living systems. Thus, RIP-Chip can be used to identify subsets of RNAs that have related functions and are potentially co-regulated, as well as proteins that are associated with them in RNP complexes. Using RIP-Chip, the identification and/or quantification of RNAs in RNP complexes can be accomplished within a few hours or days depending on the RNA detection method used.  相似文献   

5.
Nuclear RNP complex assembly initiates cytoplasmic RNA localization   总被引:1,自引:0,他引:1  
Cytoplasmic localization of mRNAs is a widespread mechanism for generating cell polarity and can provide the basis for patterning during embryonic development. A prominent example of this is localization of maternal mRNAs in Xenopus oocytes, a process requiring recognition of essential RNA sequences by protein components of the localization machinery. However, it is not yet clear how and when such protein factors associate with localized RNAs to carry out RNA transport. To trace the RNA-protein interactions that mediate RNA localization, we analyzed RNP complexes from the nucleus and cytoplasm. We find that an early step in the localization pathway is recognition of localized RNAs by specific RNA-binding proteins in the nucleus. After transport into the cytoplasm, the RNP complex is remodeled and additional transport factors are recruited. These results suggest that cytoplasmic RNA localization initiates in the nucleus and that binding of specific RNA-binding proteins in the nucleus may act to target RNAs to their appropriate destinations in the cytoplasm.  相似文献   

6.
Human TAP is implicated in mRNA nuclear export and is used by simian type D retroviruses to export their unspliced genomic RNA to the cytoplasm of the host cell. We have determined the crystal structure of the minimal TAP fragment that binds the constitutive transport element (CTE) of retroviral RNAs. Unexpectedly, we find the fragment consists of a ribonucleoprotein (RNP) domain, which is not identifiable by its sequence, and a leucine-rich repeat (LRR) domain. The non-canonical RNP domain functions as the general RNA-binding portion of the fragment. The LRR domain is required in cis to the RNP domain for CTE RNA binding. The structural and biochemical properties of the domains point to a remarkable similarity with the U2B"(RNP)-U2A'(LRR) spliceosomal heterodimer. Our in vitro and in vivo functional studies using structure-based mutants suggest that a phylogenetically conserved surface of the LRR domain of TAP may have different roles in the export of viral and cellular RNAs.  相似文献   

7.
An RNA-binding protein of 28 kDa (28RNP) was previously isolated from spinach chloroplasts and found to be required for 3' end-processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic- and glycine-rich amino terminal domain. Upon analysis of the RNA-binding properties of the 'native' 28RNP in comparison to the recombinant bacterial expressed protein, differences were detected in the affinity to some chloroplastic 3' end RNAs. It was suggested that post-translational modification can modulate the affinity of the 28RNP in the chloroplast to different RNAs. In order to determine if phosphorylation accounts for this post-translational modification, we examined if the 28RNP is a phosphoprotein and if it can serve as a substrate for protein kinases. It was found that the 28RNP was phosphorylated when intact chloroplasts were metabolically labeled with [32P] orthophosphate, and that recombinant 28RNP served as an excellent substrate in vitro for protein kinase isolated from spinach chloroplasts or recombinant alpha subunit of maize casein kinase II. The 28RNP was apparently phosphorylated at one site located in the acidic domain at the N-terminus of the protein. Site-directed mutagenesis of the serines in that region revealed that the phosphorylation of the protein was eliminated when serine number 22 from the N-terminus was changed to tryptophan. RNA-binding analysis of the phosphorylated 28RNP revealed that the affinity of the phosphorylated protein was reduced approximately 3-4-fold in comparison to the non-phosphorylated protein. Therefore, phosphorylation of the 28RNP modulates its affinity to RNA and may play a significant role in its biological function in the chloroplast.  相似文献   

8.
In the eucaryotic nucleus, heterogeneous nuclear RNAs exist in a complex with a specific set of proteins to form heterogeneous nuclear ribonucleoprotein particles (hnRNPs). The C proteins, C1 and C2, are major constituents of hnRNPs and appear to play a role in RNA splicing as suggested by antibody inhibition and immunodepletion experiments. With the use of a previously described partial cDNA clone as a hybridization probe, full-length cDNAs for the human C proteins were isolated. All of the cDNAs isolated hybridized to two poly(A)+ RNAs of 1.9 and 1.4 kilobases (kb). DNA sequencing of a cDNA clone for the 1.9-kb mRNA (pHC12) revealed a single open reading frame of 290 amino acids coding for a protein of 31,931 daltons and two polyadenylation signals, AAUAAA, approximately 400 base pairs apart in the 3' untranslated region of the mRNA. DNA sequencing of a clone corresponding to the 1.4-kb mRNA (pHC5) indicated that the sequence of this mRNA is identical to that of the 1.9-kb mRNA up to the first polyadenylation signal which it uses. Both mRNAs therefore have the same coding capacity and are probably transcribed from a single gene. Translation in vitro of the 1.9-kb mRNA selected by hybridization with a 3'-end subfragment of pHC12 demonstrated that it by itself can direct the synthesis of both C1 and C2. The difference between the C1 and C2 proteins which results in their electrophoretic separation is not known, but most likely one of them is generated from the other posttranslationally. Since several hnRNP proteins appeared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as multiple antigenically related polypeptides, this raises the possibility that some of these other groups of hnRNP proteins are also each produced from a single mRNA. The predicted amino acid sequence of the protein indicates that it is composed of two distinct domains: an amino terminus that contains what we have recently described as a RNP consensus sequence, which is the putative RNA-binding site, and a carboxy terminus that is very negatively charged, contains no aromatic amino acids or prolines, and contains a putative nucleoside triphosphate-binding fold, as well as a phosphorylation site for casein kinase type II. The RNP consensus sequence was also found in the yeast poly(A)-binding protein (PABP), the heterogeneous nuclear RNA-binding proteins A1 and A2, and the pre-rRNA binding protein C23. All of these proteins are also composed of at least two distinct domains: an amino terminus, which possesses one or more RNP consensus sequences, and a carboxy terminus, which is unique to each protein, being very acidic in the C proteins and rich in glycine in A1, and C23 and rich in proline in the poly(A)-binding protein. These findings suggest that the amino terminus of these proteins possesses a highly conserved RNA-binding domain, whereas the carboxy terminus contains a region essential to the unique function and interactions of each of the RNA-binding proteins.  相似文献   

9.
10.
Ribonucleoproteins (RNPs) consisting of derivatives of a ribozyme and an RNA-binding protein were designed and constructed based upon high-resolution structures of the corresponding prototype molecules, the Tetrahymena group I self-splicing intron RNA and two proteins (bacteriophage lambdaN and HIV Rev proteins) containing RNA-binding motifs. The splicing reaction proceeds efficiently only when the designed RNA associates with the designed protein either in vivo or in vitro. In vivo mutagenic protein selection was effective for improving the capability of the protein. Kinetic analyses indicate that the protein promotes RNA folding to establish an active conformation. The fact that the conversion of a ribozyme to an RNP can be accomplished by simple molecular design supports the RNA world hypothesis and suggests that a natural active RNP might have evolved readily from a ribozyme.  相似文献   

11.
RNA-binding proteins and post-transcriptional gene regulation   总被引:6,自引:0,他引:6  
Glisovic T  Bachorik JL  Yong J  Dreyfuss G 《FEBS letters》2008,582(14):1977-1986
  相似文献   

12.
There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.  相似文献   

13.
14.
We have isolated cDNA clones encoding the human RD protein, which is closely related to several known nuclear RNA-binding proteins. The RD protein contains a 60-amino acid (aa) tract almost entirely of alternating basic and acidic aa, (RD)n, primarily arginine (Arg; R) and aspartic acid (Asp; D). The protein also contains an ‘RNP sequence domain’. Arg-rich tracts and the RNP sequence domain are both features of nuclear RNA-binding proteins. However, we have been unable to detect RNA-binding by the human RD protein. The very strong evolutionary conservation of the mammalian RD protein as sequence suggests that it plays an important role in the cell.  相似文献   

15.
16.
17.
Ribonucleoprotein (RNP) complexes regulate the tissue-specific RNA processing and transport that increases the coding capacity of our genome and the ability to respond quickly and precisely to the diverse set of signals. This review focuses on three proteins that are part of RNP complexes in most cells of our body: TAR DNA-binding protein (TDP-43), the survival motor neuron protein (SMN), and fragile-X mental retardation protein (FMRP). In particular, the review asks the question why these ubiquitous proteins are primarily associated with defects in specific regions of the central nervous system? To understand this question, it is important to understand the role of genetic and cellular environment in causing the defect in the protein, as well as how the defective protein leads to misregulation of specific target RNAs. Two approaches for comprehensive analysis of defective RNA-protein interactions are presented. The first approach defines the RNA code or the collection of proteins that bind to a certain cis-acting RNA site in order to lead to a predictable outcome. The second approach defines the RNA map or the summary of positions on target RNAs where binding of a particular RNA-binding protein leads to a predictable outcome. As we learn more about the RNA codes and maps that guide the action of the dynamic RNP world in our brain, possibilities for new treatments of neurologic diseases are bound to emerge.  相似文献   

18.
In vitro and in vivo selection techniques are developed to constitute new RNA–peptide interactions. The selection strategy is designed by employing a catalytic RNP consisting of a derivative of the Tetrahymena ribozyme and an artificial RNA-binding protein. An arginine-rich RNA-binding motif and its target RNA motif in the RNP are substituted with randomized sequences and used for the selection experiments. Previously unknown binding motifs are obtained and the newly established interactions have been indispensable for assembling a catalytically active RNP. The method employed in this study is useful for making customized self-splicing intron RNAs whose activity is regulated by protein cofactors.  相似文献   

19.
20.
A group of proteins containing a conserved ribonucleoprotein consensus sequence (RNP-CS)-type RNA-binding domain (CS-RBD) of approximately 80 amino acids is present in eukaryotic cells and binds specifically to a wide variety of RNA molecules. We have isolated 12 kDa single-stranded DNA binding proteins from the unicellular cyanobacterium Synechococcus 6301. The amino-terminal sequence was determined and two distinct genomic clones were isolated from a Synechococcus 6301 genomic library. Sequence analysis revealed that two closely related proteins contain a single CS-RBD of 82 amino acids and are named as 12RNP1 and 12RNP2. Both of the CS-RBDs share the highest amino acid identity with those of chloroplast ribonucleoproteins (40-51%). The 12RNP proteins were expressed in Escherichia coli bearing plasmids encoding glutathione S-transferase/12RNP fusion proteins and subjected to in vitro nucleic acid-binding assay. Both 12RNP1 and 12RNP2 bind to RNA homopolymers poly(U) and poly(G), indicating that they might be RNA-binding proteins. This is the first example of such proteins in prokaryotes. The 12RNP1 and 12RNP2 genes are transcribed as monocistronic mRNAs and the steady-state mRNA level of 12RNP1 is over 20-fold than that of 12RNP2. Due to the easiness of genetic manipulations the cyanobacterium will provide an excellent system to analyze the function of not only cyanobacterial but also plant RNA-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号