首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Islet amyloid polypeptide has 37 amino acids and is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes mellitus. To determine whether the peptide is involved in the impaired insulin secretion in this type of diabetes mellitus, we synthesized islet amyloid polypeptide and its fragments and examined its effect on insulin secretion. Islet amyloid polypeptide inhibited the glucose-stimulated insulin secretion from isolated rat pancreatic islets, as calcitonin gene-related peptide did, but the fragments failed to inhibit the secretion. Thus, we propose that amyloid deposition may be an important factor in the impairment of insulin secretion in type 2 diabetes mellitus.  相似文献   

2.
Non-insulin dependent diabetes mellitus (NIDDM) is characterized by a specific defect in glucose recognition by the pancreatic islet beta cell. This is in clear distinction to patients with insulin dependent diabetes mellitus (IDDM) who undergo pancreatic islet beta cell death and no longer have the ability to synthesize, store, and release insulin. Defective glucose-induced first phase insulin responses in patients with NIDDM can be partially restored by exogenous insulin treatment and by other pharmacologic therapy. These observations provide strength for the theory of glucose desensitization of the pancreatic beta cell as an important secondary defect in the pathogenesis of abnormal insulin secretion in NIDDM. However, even though defective insulin secretion is an essential part of the pathogenesis of NIDDM, in itself it is not sufficient. A multiplicative effect is required involving interaction between tissue resistance to insulin action and defective insulin secretion whose product is the syndrome of NIDDM.  相似文献   

3.
The misfolding of islet amyloid polypeptide (IAPP, amylin) results in the formation of islet amyloid, which is one of the most common pathological features of type 2 diabetes (T2D). Amylin, a 37-amino-acid peptide co-secreted with insulin and apolipoprotein E (ApoE) from the β-cells of pancreatic islets, is thought to be responsible for the reduced mass of insulin-producing β-cells. However, neither the relationship between amylin and ApoE nor the biological consequence of amylin misfolding is known. Here we have characterized the interaction between ApoE4 and amylin in vitro. We found that ApoE4 can strongly bind to amylin, and insulin can hardly inhibit amylin-ApoE binding. We further found that amylin fibrillization can be prevented by low concentration of ApoE4 and promoted by high concentration of ApoE4. Taken together, we propose that under physiological conditions ApoE4 efficiently binds and sequesters amylin, preventing its aggregation, and in T2D the enhanced ApoE4-amylin binding leads to the critical accumulation of amylin, facilitating islet amyloid formation.  相似文献   

4.
Diabetes mellitus (DM), one of the most prevalent metabolic diseases in the world population, is associated with a number of comorbid conditions including obesity, pancreatic endocrine changes, and renal and cardio-cerebrovascular alterations, coupled with peripheral neuropathy and neurodegenerative disease, some of these disorders are bundled into metabolic syndrome. Type 1 DM (T1DM) is an autoimmune disease that destroys the insulin-secreting islet cells. Type 2 DM (T2DM) is diabetes that is associated with an imbalance in the glucagon/insulin homeostasis that leads to the formation of amyloid deposits in the brain, pancreatic islet cells, and possibly in the kidney glomerulus. There are several layers of molecular pathologic alterations that contribute to the DM metabolic pathophysiology and its associated neuropathic manifestations. In this review, we describe the general signature metabolic features of DM and the cross-talk with neurodegeneration. We will assess the underlying molecular key players associated with DM-induced neuropathic disorders that are associated with both T1DM and T2DM. In this context, we will highlight the role of tau and amyloid protein deposits in the brain as well in the pancreatic islet cells, and possibly in the kidney glomerulus. Furthermore, we will discuss the central role of mitochondria, oxidative stress, and the unfolded protein response in mediating the DM-associated neuropathic degeneration. This study will elucidate the relationship between DM and neurodegeneration which may account for the evolution of other neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease as discussed later.  相似文献   

5.
Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer’s disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia.  相似文献   

6.
Kapurniotu A 《Biopolymers》2001,60(6):438-459
Insoluble amyloid formation by islet amyloid polypeptide (IAPP) in the islets of Langerhans of the pancreas is a major pathophysiological feature of noninsulin dependent diabetes mellitus (NIDDM) or type II diabetes. Because in vivo formed amyloid colocalizes with areas of cell degeneration and IAPP amyloid aggregates are cytotoxic per se, the process of IAPP amyloid formation has been strongly associated with the progressive pancreatic cell degeneration and thus much of the pathology of type II diabetes. IAPP is a pancreatic polypeptide of 37 residues that, in its soluble form, is believed to play a role as a regulator of glucose homeostasis. The molecular cause and mechanism of the conversion of soluble IAPP into insoluble amyloid aggregates in vivo and its role in disease progress still remain to be clarified. Nevertheless, in the past few years significant progress has been made in understanding the amyloidogenesis pathway of IAPP in vitro and gaining insight into the structural and conformational "requirements" of IAPP amyloidogenesis and related cytotoxic effects. Importantly, several of the studies have revealed significant similarities of the above features of IAPP to other amyloidogenic polypeptides such as the beta-amyloid polypeptide Abeta. This suggests that, at the molecular level, amyloidogenesis, and possibly related cell degeneration and disease pathogenesis by completely different polypeptide sequences, may obey to common structural and conformational "rules" and follow similar molecular pathways. This review describes studies on the structural and conformational features of IAPP amyloid formation and cytotoxicity, and the application of the obtained knowledge for the understanding of the molecular mechanism of the IAPP amyloidogenesis pathway and the related cytotoxicity.  相似文献   

7.
Pancreatic β-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood.In the present mini-review we discuss novel aspects of selective insulin signaling in the β-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/β-cell biology at single-cell resolution.  相似文献   

8.
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (~p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.  相似文献   

9.
10.
胰高血糖素样肽1与干细胞定向分化   总被引:2,自引:0,他引:2  
糖尿病已经成为21世纪严重威胁人类健康的疾病之一。胰岛移植被认为是治疗Ⅰ型和部分Ⅱ型糖尿病的最有效方法。然而,供体组织来源的匮乏限制了其应用。随着细胞移植和组织工程的日益发展,干细胞研究为新型胰岛的来源开辟了新的途径。干细胞定向诱导分化的关键是筛选合适的诱导剂以及优化诱导微环境,使干细胞培养微环境尽可能接近体内正常细胞发育分化的微环境,从而有利于干细胞适宜生长及定向分化。最近研究证实,胰高血糖素样肽1(Glucagon- Like PeptideⅠ,GLP-1)在干细胞向胰岛样细胞诱导分化中具有显著作用。因此,为了更好地应用GLP-1在干细胞定向分化中的潜能、促进应用干细胞治疗糖尿病新疗法研究的进程及干细胞定向分化技术逐渐成熟,本文就胰高血糖素样肽-1及它诱导干细胞定向分化胰岛样细胞的研究进展作一阐述。  相似文献   

11.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   

12.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

13.
Islet fibrosis could be important in the progression of pancreatic beta cell failure in type 2 diabetes. It is known that oxidative stress is involved in the pancreatic fibrosis through the activation of pancreatic stellate cells. However, no study has investigated the in vivo effects of antioxidants on islet fibrogenesis in type 2 diabetes. In this study, antioxidants (taurine or tempol) were administered in drinking water to Otsuka Long-Evans Tokushima Fatty rats, an animal model of type 2 diabetes, for 16 weeks. An intraperitoneal glucose tolerance test revealed that the blood glucose levels after the glucose injection were decreased by the antioxidants. The insulin secretion after the glucose injection, which was markedly reduced in the rats, was also restored by the antioxidants. Beta cell mass and pancreatic insulin content were greater in the rats treated with the antioxidants than in the untreated rats. Beta cell apoptosis was attenuated in the rats by the antioxidants. Finally, islet fibrosis and the activation of pancreatic stellate cells were markedly diminished in the rats by the antioxidants. Our data suggest that antioxidants may protect beta cells through the attenuation of both islet fibrosis and beta cell apoptosis in type 2 diabetes.  相似文献   

14.
Islet amyloid contributes to the loss of beta-cell mass in type 2 diabetes. To examine the roles of glucose and time on amyloid formation, we developed a rapid in vitro model using isolated islets from human islet amyloid polypeptide (hIAPP) transgenic mice. Islets from hIAPP transgenic and non-transgenic mice were cultured for up to 7 days with either 5.5, 11.1, 16.7 or 33.3mmol/l glucose. At various time-points throughout the culture period, islets were harvested for determination of amyloid and beta-cell areas, and for measures of cell viability, insulin content, and secretion. Following culture of hIAPP transgenic islets in 16.7 or 33.3mmol/l glucose, amyloid formation was significantly increased compared to 5.5 or 11.1mmol/l glucose culture. Amyloid was detected as early as day 2 and increased in a time-dependent manner so that by day 7, a decrease in the proportion of beta-cell area in hIAPP transgenic islets was evident. When compared to non-transgenic islets after 7-day culture in 16.7mmol/l glucose, hIAPP transgenic islets were 24% less viable, had decreased beta-cell area and insulin content, but displayed no change in insulin secretion. Thus, we have developed a rapid in vitro model of light microscopy-visible islet amyloid formation that is both glucose- and time-dependent. Formation of amyloid in this model is associated with reduced cell viability and beta-cell loss but adequate functional adaptation. It thus enables studies investigating the mechanism(s) underlying the amyloid-associated loss of beta-cell mass in type 2 diabetes.  相似文献   

15.
Summary Islet amyloid peptide (or diabetes-associated peptide), the major component of pancreatic islet amyloid found in type-2 diabetes, has been identified by electronmicroscopic immunocytochemistry in pancreatic B-cells from five non-diabetic human subjects, and in islets from five type-2 diabetic patients. The greatest density of immunoreactivity for islet amyloid peptide was found in electrondense regions of some lysosomal or lipofuscin bodies. The peptide was also localised by quantification of immunogold in the secretory granules of B-cells, and was present in cytoplasmic lamellar bodies. Acid phosphatase activity was also demonstrated in these organelles. Immunoreactivity for insulin was found in some lysosomes. These results suggest that islet amyloid peptide is a constituent of normal pancreatic B-cells, and accumulates in lipofuscin bodies where it is presumably partially degraded. In islets from type-2 diabetic subjects, amyloid fibrils and lipofuscin bodies in B-cells showed immunoreactivity for the amyloid peptide. Abnormal processing of the peptide within B-cells could lead to the formation of islet amyloid in type-2 diabetes.  相似文献   

16.
Antibodies raised to a lysine solubilized peptide composed of residues 20-29 of the pancreatic islet amyloid polypeptide react selectively and specifically with this polypeptide and with islet amyloid deposits in Type 2 diabetes mellitus. These antibodies may prove useful in studies employing radioimmunoassay of body fluids and islet cell cultures in order to define if a pathogenic relationship exists between the islet amyloid polypeptide and Type 2 diabetes mellitus.  相似文献   

17.
Secretion of islet amyloid polypeptide in response to glucose   总被引:4,自引:0,他引:4  
The content of islet amyloid polypeptide (IAPP) in isolated rat pancreatic islets was determined by a radioimmunoassay. Reverse-phase high-performance liquid chromatography analysis revealed that a main peak of IAPP immunoreactivity in the extracts from the islets corresponded to a synthetic rat IAPP. Secretion of IAPP from the cells is regulated by the extracellular glucose concentration. Thus, IAPP may be a novel regulator for glucose homeostasis and changes in the secretion perhaps relate to insular amyloid deposits and impaired glucose tolerance in type 2 diabetes mellitus.  相似文献   

18.
The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.  相似文献   

19.
A synthetic peptide formed from residues 20-29 of the pancreatic islet amyloid protein has the confirmation of a twisted beta-pleated sheet protein suggesting it is a potential contributor toward amyloid fibril formation in the islets of Langerhans in Type 2 diabetes mellitus.  相似文献   

20.
Type 2 diabetes mellitus is a disorder of glucose homeostasis involving complex gene and environmental interactions that are incompletely understood. Mammalian homologs of nematode sex determination genes have recently been implicated in glucose homeostasis and type 2 diabetes mellitus. These are the Hedgehog receptor Patched and Calpain-10, which have homology to the nematode tra-2 and tra-3 sex determination genes, respectively. Here, we have developed Fem1b knockout (Fem1b-KO) mice, with targeted inactivation of Fem1b, a homolog of the nematode fem-1 sex determination gene. We show that the Fem1b-KO mice display abnormal glucose tolerance and that this is due predominantly to defective glucose-stimulated insulin secretion. Arginine-stimulated insulin secretion is also affected. The Fem1b gene is expressed in pancreatic islets, within both beta cells and non-beta cells, and is highly expressed in INS-1E cells, a pancreatic beta-cell line. In conclusion, these data implicate Fem1b in pancreatic islet function and insulin secretion, strengthening evidence that a genetic pathway homologous to nematode sex determination may be involved in glucose homeostasis and suggesting novel genes and processes as potential candidates in the pathogenesis of diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号