首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

3.
Changes in myosin isozymes during development of chicken gizzard muscle   总被引:3,自引:0,他引:3  
The distribution of myosin isozymes in embryonic and adult chicken gizzard muscle were examined by electrophoresis in a non-denaturing gel system (pyrophosphate acrylamide gel electrophoresis), and both light and heavy chains of embryonic and adult myosin isozymes were compared. In pyrophosphate acrylamide gel electrophoresis, there were three isozyme components in embryonic gizzard myosin, but only one isozyme in adult gizzard myosin. The mobility of the fastest migrating embryonic isozyme was similar to that of the adult isozyme. The three embryonic isozymes differ from each other in the light chain distribution. Two of them contain an embryo-specific myosin light chain, which is characterized by its molecular weight and isoelectric point, whereas the other embryonic myosin isozyme contained the same light chains as the adult myosin. The pattern of peptide fragments of embryonic heavy chain produced by digestion with alpha-chymotrypsin in the presence of SDS was not distinguishable from that of adult myosin heavy chain. Thus there are myosin isozymes specific to embryonic gizzard muscle which exhibit embryo-specific light chain compositions, but are similar to adult gizzard myosin in their heavy chain structure.  相似文献   

4.
Antibodies to smooth muscle and non-muscle myosin allow the development of smooth muscle and its capillary system in the embryonic chicken gizzard to be followed by immunofluorescent techniques. Although smooth muscle development proceeds in a serosal to luminal direction, angiogenetic cell clusters develop independently at the luminal side close to the epithelial layer, and the presumptive capillaries invade the developing muscle in a luminal to serosal direction. The smooth muscle and non-muscle myosin heavy chains in this avian system cannot be separated by SDS polyacrylamide gel electrophoresis and do not show isoform specificity in immunoblotting, unlike the system found in mammals. Only two myosin heavy chains with Mr of 200 and 196 kDa were separable and considerable immunological cross-reactivity was found between the denatured myosin isoform heavy chains.  相似文献   

5.
Structure and function of chicken gizzard myosin.   总被引:24,自引:0,他引:24  
In our previous study (Onishi, H., Susuki, H., Nakamura, k., and Watanabe, S. J. Biochem. 83, 835-847, 1978), we found it to be characteristic of chicken gizzard myosin that thick filaments of gizzard myosin are readily disassembled by a stoichiometric amount of ATP (3 mol of ATP per mol of myosin), and that the ATPase activity of gizzard myosin in the ATP-disassembled state is much lower than that of gizzard myosin disassembled by a high concentration of KCl. We now report the following findings: (1) Thick filaments of (unphosphorylated) gizzard myosin can be in a bipolar structure or in a non-polar structure, depending on the method of preparing the thick filaments. (2) Thick filaments of (unphosphorylated) gizzard myosin in either the bioplar or the non-polar structure are readily disassembled by ATP. (3) Addition of rabbit skeletal C-protein does not confer ATP resistance on thick filaments of (unphosphorylated) gizzard myosin. (4) Unphosphorylated) gizzard myosin in the ATP-disassembled state is in a dimeric form as determined by ultracentrifugation. Moreover, 0.2 M KCl-dissociated gizzard myosin in monomeric form is converted to a dimeric form by ATP. (5) The Mg-ATPase activity of (unphosphorylated) gizzard myosin is much lower in its dimeric form (less than one-tenth) than in its monomeric form. The activity depression observed around 0.15 M KCl is therefore due to the formation of myosin dimers. (6) Skeletal L-meromyosin can increase the very low activity of (unphosphorylated) gizzard myosin ATPase at low ionic strength (0.13 M KCl) by forming ATP-resistant hybrid filaments with (unphosphorylated) gizzard myosin, preventing the formation of myosin dimers. (7) Gizzard myosin in which one of the light-chain components is phosphorylated by myosin light-chain kinase can form thick filaments which are resistant to the disassembling action of ATP. (8) Even in the presence of ATP, thick filaments of phosphorylated gizzard myosin do not disassembled into myosin dimers. Accordingly, the ATPase activity of phosphorylated gizzard myosin does not show activity depression at low ionic strength.  相似文献   

6.
Summary Antibodies to chicken gizzard myosin and to chicken skin collagen type I allow the myofibrillar and connective tissue development in the embryonic chicken gizzard to be followed. Fibroblasts are assumed to synthesize collagen prior to the onset of smooth muscle cell development in the muscle primordium (day 5); they are presumably also responsible for collagen synthesis close to the presumptive lamina propria and in the developing tubular glands (day 14 to 17). From day 6 to 8, myosin and collagen are colocalized intracellularly, and from day 9 onward collagen fibers start to appear extracellularly, eventually forming the trellis-like connective tissue septa that give the rhomboid profile found in the adult muscle. The close association of collagen and myosin in early development suggests that the muscle cells themselves produce and export collagen.  相似文献   

7.
8.
1. Myosin from gizzards of 15-day-old chicken embryos was highly purified by ammonium sulfate fractionation in the presence of ATP and MgCl2, ultra-centrifugation and Sepharose 4B chromatography. 2. The myosin composed of heavy and three light chains as determined by sodium dodecyl sulfate (SDS) gel electrophoresis. The molecular weights of the light chains were 23,000 (L23), 20,000 (L20), and 17,000 (L17), respectively. The amount of L23 light chain decreased and disappeared, and the L17 light chain increased steadily in the course of development. The amount of L20 light chain did not change. 3. ATPase activity of the embryonic myosin was essentially the same as that of adult myosin. The change in the light chain pattern in the course of development did not correlate to the ATPase activity. 4. Antigenicity of the heavy chains in the embryonic myosin was the same as that of the adult heavy chains. However, antibodies to light chains were not detected in the antibodies to either the embryonic or adult myosins.  相似文献   

9.
10.
11.
Calcium sensitivity of vertebrate skeletal muscle myosin   总被引:3,自引:0,他引:3  
D L Pulliam  V Sawyna  R J Levine 《Biochemistry》1983,22(10):2324-2331
The calcium sensitivity of vertebrate skeletal muscle myosin has been investigated. Adenosinetriphosphatase (ATPase) activity was assayed in a reconstituted system composed of either purified rabbit myosin plus actin or myosin plus actin, tropomyosin, and troponin. The calcium sensitivity of actomyosin Mg-ATPase activity was found to be directly affected by the ionic strength of the assay medium. Actomyosin assayed at approximately physiological ionic strength (120 mM KCl) demonstrated calcium sensitivity which varied between 6 and 52%, depending on the myosin preparation and the age of the myosin. Mg-ATPase activity was increased when calcium was present in the assay medium at physiological ionic strength. Conversely, actomyosin Mg-ATPase activity assayed at a lower ionic strength (15 mM KCl) was inhibited by addition of calcium. Addition of tropomyosin and troponin to the assay increased the calcium sensitivity of the system at the physiological ionic strength still further (up to 99% calcium sensitivity) and conferred calcium sensitivity on the system at the lower ionic strength (greater than 90% calcium sensitivity). A correlation also existed between myosin's calcium sensitivity and the phosphorylated state of light chain 2.  相似文献   

12.
W Fischer  G Pfitzer 《FEBS letters》1989,258(1):59-62
In intact smooth muscle strips from chicken gizzard, electrical stimulation and carbachol elicited brief, phasic contractions which were associated with a very rapid, transient phosphorylation of the 20 kDa myosin light chains. The phosphorylation transients reached their peak after 3 s and 6 s and preceded that of force. Phosphorylation was not significantly different from basal levels after 10 s and 30 s while force still amounted to 50% of the peak value. The rate of tension decline could be increased by cessation of stimulation or by addition of atropine, even at apparently basal phosphorylation levels suggesting a phosphorylation independent regulation.  相似文献   

13.
We investigated proteolytic susceptibility of the central domain in dystrophin molecules from chicken smooth and skeletal muscles. Dystrophin-enriched preparations from both muscles were made as described in Pons et al. (Proc. Natl. Acad. Sci. USA (1990) 87, 7851-7855). These preparations contained other protein components in addition to dystrophin. Three enzymes (Staphylococcus aureus proteinase, chymotrypsin and trypsin) having different proteolytic specificities were used. Time-courses of proteinase degradation were examined by the Western immunoblot technique using a specific polyclonal serum directed against a fragment (residues 1173-1728) of the dystrophin central domain. We observed accumulation of some major proteinase-resistant fragments, in the 110-160 kDa range originating from that central region of the molecule. Cleavage patterns of the smooth and skeletal muscle preparations were quite similar, but molecular weights of the breakdown products differed slightly. Interpretation of the results was based on two predictive structural models of the dystrophin central domain (Koenig and Kunkel (1990) J. Biol. Chem. 265, 4560-4566 and Cross et al. (1990) FEBS Lett. 262, 87-90). Skip residues at the end of repeat 13 (around the 1740th residue of the dystrophin amino acid sequence), as hypothesized in the Cross model, constitute probably the most sensitive site within the dystrophin central domain for any exogenous (or even endogenous) proteinase. Variations observed between dystrophins from skeletal and smooth muscles also suggest that the structures of both dystrophins differ slightly even within the dystrophin central domain. This precise identification of proteinase-resistant dystrophin fragments of variable lengths is a first step towards further physicochemical studies on the very large and rare dystrophin molecule.  相似文献   

14.
Myosin from chicken gizzard smooth muscle was found to be characteristically different from rabbit skeletal striated myosin: i) ATP induced a profound change in the conformation of gizzard myosin molecules. ii) ATP also induced disassembling of gizzard myosin filaments. iii) Enzymic phosphorylation of gizzard myosin light chains rendered both the myosin conformation and the myosin filaments resistant to the actions of ATP. iv) Very high concentrations of magnesium were required for formation of the ATP-resistant filaments as well as for superprecipitation (a model contraction) of actomyosin suspensions. v) ITP was a very poor substrate for MLCK, and was accordingly incapable of inducing “Ca-tension” in glycerinated fibers of gizzard muscle, but it did induce “Mg-tension.” Primarily from these findings, it was proposed that tje mechanism of gizzard muscle contraction involves ATP-induced changes in the morphology of myosin filaments which are reversibly altered by enzymic phosphorylation and dephosphorylation of myosin light chains in the presence of relatively high concentrations of magnesium.  相似文献   

15.
16.
Previously, we (Onishi, H. & Wakabayashi, T. (1982) J. Biochem. 92, 871) reported that the ATP-induced disassembly of chicken gizzard "thick filaments" resulted in myosin monomers with "looped" tails. In the present study, we found that these monomers assembled themselves into antiparallel dimers when they were placed in a medium of low ionic strength (approximately 2 mM).  相似文献   

17.
Modification of chicken gizzard myosin with phenyl[2-14C]-glyoxal inhibited the K+-ATPase (ATP phosphohydrolase, EC 3.6.1.32) activity as a function of time. During the 2.5 and 15 min interval 3.2 mol of the reagent were incorporated per 4.7 X 10(5) g protein and the K+-ATPase activity was 50% inhibited. Phenylglyoxal reacted with arginine residues of gizzard myosin in a mol ratio of two to one, phenylglyoxal to arginine as determined spectrophotometrically. The modification was limited to the subfragment 1 heavy chain and rod-like regions and none of the light chains were lost. The inhibition of the ATPase activity occurred when the subfragment 1 region was modified predominantly. The same results were obtained when the myosin was phosphorylated and then incubated with phenylglyoxal. Substrate MgATP2- or MgADP enhanced the inactivation of gizzard myosin; there was an increase in the incorporation of the reagent and a change in the distribution into the heavy chains. Approx. 0.5 mol of the nucleotide was bound to 4.7 X 10(5) g of phenylglyoxal myosin. Conformational changes, induced by these modifications, were responsible for the inhibition of enzymic activity. Arginine residues of gizzard myosin are necessary for the maintenance of the ATPase activity of this contractile protein.  相似文献   

18.
Zhang HL  Tang ZY  Yang JX  Zhang Y  Li Y  Lin Y 《FEBS letters》2006,580(2):469-473
This study is to reveal the characteristics of bidirectional regulation of emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) and quercetin on gizzard smooth muscle myosin. Our results indicate that: (a) emodin demonstrates stimulatory effects, and quercetin produces inhibitory effects on myosin phosphorylation and Mg(2+)-ATPase activities of Ca(2+)/calmodulin-dependent phosphorylated myosin in a dose-dependent manner; (b) a combination of emodin and quercetin enhances phosphorylation and Mg(2+)-ATPase activities for partially phosphorylated myosin and inhibits those activities for fully phosphorylated myosin; (c) 1-(5-Chloronaphthalene-1-sulfonyl)-1H2-hexahydro-1,4-diazepine inhibits myosin phosphorylation in the presence of emodin and/or quercetin. A combination of emodin and quercetin indicates its potential for modulating gastric-intestinal smooth muscle.  相似文献   

19.
1. A troponin C-like protein was prepared from frozen chicken gizzard by preparative polyacrylamide gel electrophoresis and its apparent molecular weight was estimated to be about 15,500 daltons. 2. In urea gel electrophoresis, the mobility of the troponin C-like protein increased slightly in the presence of Ca2+, like that of skeletal muscle troponin C. On the other hand, the mobility of the the troponin C-like protein in glycerol gel electrophoresis, unlike that of skeletal muscle troponin C, was significantly decreased by Ca2+. 3. In alkaline gel electrophoresis, the troponin C-like protein formed a Ca2+-dependent complex with troponin I or troponin T from skeletal muscle. 4. The troponin C-like protein could neutralize the inhibitory effect of skeletal muscle troponin I on the Mg2+-activated ATPase of actomyosin from rabbit skeletal muscle, but could not confer Ca2+-sensitivity on the actomyosin in the presence of troponin I and troponin T from skeletal muscle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号