首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Early-onset, generalized primary torsion dystonia (PTD) is an autosomal dominantly inherited disorder, characterized by involuntary movements and abnormal postures. The majority of cases are caused by a 3-bp deletion in the DYT1 gene on chromosome 9q34 that allows for specific genetic testing. We developed a simple, reliable, and cost-effective, PCR-based screening method for this mutation. Testing results from a cohort of 550 cases, including patients with different forms of dystonia and unclassified movement disorders, revealed that 72.2% of the patients with typical early-onset generalized PTD carried the GAG deletion in the DYT1 gene. Among 300 cases with late-onset focal/segmental dystonia, only 3 patients tested positive for the GAG deletion whereas 12.8% of the patients with an unclassified movement disorder were GAG positive. Our results confirm a genotype/phenotype correlation in early-onset PTD and show that application of strict clinical criteria leads to accurate prediction of carrier status in more than two-thirds of patients with this type of dystonia. Currently, we suggest that testing be recommended in individuals with age of onset of dystonia below 30 years and/or a positive family history of early-onset PTD. Testing is not recommended in patients with onset of symptoms after 30 years or in asymptomatic individuals under the age of 18.  相似文献   

2.
Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locus DYT1 on chromosome 9q32-34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22-25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT gene in probands did not reveal the major deletion 946-948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of theta = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3720 and a common "mutant" haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET.  相似文献   

3.
A GAG deletion in the DYT1 gene is a major cause of early-onset dystonia, but clinical disease expression occurs in only 30% of mutation carriers. To gain insight into genetic factors that may influence penetrance, we evaluated three DYT1 single-nucleotide polymorphisms, including D216H, a coding-sequence variation that moderates the effects of the DYT1 GAG deletion in cellular models. We tested DYT1 GAG-deletion carriers with (n=119) and without (n=113) clinical signs of dystonia and control individuals (n=197) and found the frequency of the 216H allele to be increased in GAG-deletion carriers without dystonia and to be decreased in carriers with dystonia, compared with the control individuals. Analysis of haplotypes demonstrated a highly protective effect of the H allele in trans with the GAG deletion; there was also suggestive evidence that the D216 allele in cis is required for the disease to be penetrant. Our findings establish, for the first time, a clinically relevant gene modifier of DYT1.  相似文献   

4.
Essential tremor (ET) is the most common extrapyramidal disorder of the central nervous system with autosomal dominant transmission in the majority of cases and age-dependent penetrance of the mutant gene. In a number of cases, it shares some phenotypic features with autosomal dominant idiopathic torsion dystonia (locusDYT1on chromosome 9q32–34) and is genetically heterogeneous: distinct variants of ET were mapped to chromosomes 3q13 (ETM1) and 2p22–25 (ETM2). We performed studies of candidate loci in a group of Slavonic (11 patients) and Tajik (19 patients) families with ET. Mutational analysis of the DYT1 gene in probands did not reveal the major deletion 946–948delGAG characteristic of idiopathic torsion dystonia, which allows one to genetically distinguish the studied hereditary forms of ET and torsion dystonia. Based on analysis of genetic linkage in informative Tajik pedigrees with ET, linkage to locus ETM1 on chromosome 3q13 was established in four families. Maximum pairwise Lod score was 2.46 at recombination fraction of = 0.00; maximum combined multipoint Lod score was 3.35 for marker D3S3515 and a common mutant haplotype for markers D3S3620, D3S3576, and D3S3720 allowed us to locate a mutant gene in a relatively narrow chromosome region spanning 2 cM. In one informative pedigree with ET, both candidate loci ETM1 and ETM2 were definitely excluded on the basis of negative Lod scores obtained by linkage estimations, which testifies to the existence of another distinct gene for autosomal dominant ET.  相似文献   

5.
Myoclonus–dystonia (M–D) is an autosomal-dominant movement disorder with onset in the first two decades of life. Mutations in the epsilon-sarcoglycan gene (SGCE, DYT11) on chromosome 7q21–q31 represent the major genetic cause of M–D in some populations. The syndrome was related with mutations in two other genes (DRD2 and DYT1). A second locus has been reported in one large M–D family (DYT15, 18p11), but no gene has been identified yet. In this review, we discuss genetic aspects of myoclonus–dystonia.  相似文献   

6.
Idiopathic torsion dystonia (ITD) is characterized by involuntary twisting movements and postures. A gene for this disorder, DYT1, was mapped to chromosome 9q34 in 12 Ashkenazi Jewish (AJ) families and one large non-Jewish kindred. In the AJ population, strong linkage disequilibrium exists between DYT1 and adjacent markers within a 2-cM region. The associated haplotype occurs in >90% of early limb-onset AJ cases. We examined seven non-Jewish ITD families of northern European and French Canadian descent to determine the extent to which early-onset ITD in non-Jews maps to DYT1. Results are consistent with linkage to the DYT1 region. Affected individuals in these families are clinically similar to the AJ cases; i.e., the site of onset is predominantly in the limbs and at least one individual in each pedigree had onset before age 12 years. None carries the AJ haplotype; therefore, they probably represent different mutations in the DYT1 gene. The two French Canadian families, however, display the same haplotype. Estimates of penetrance in non-Jewish families range from .40 to .75. We identified disease gene carriers and, with adjustments for age at onset, obtained a direct estimate of penetrance of .46. This is consistent with estimates of 30%–40% in the AJ population. Two other non-Jewish families with atypical ITD (later onset and/or cranial or cervical involvement) are not linked to DYT1, which indicates involvement of other genes in dystonia.  相似文献   

7.
Several groups have reported evidence suggesting linkage of bipolar affective disorder (BPAD) to chromosome 18. We have reported data from 28 pedigrees that showed linkage to marker loci on 18p and to loci 40 cM distant on 18q. Most of the linkage evidence derived from families with affected phenotypes in only the paternal lineage and from marker alleles transmitted on the paternal chromosome. We now report results from a series of 30 new pedigrees (259 individuals) genotyped for 13 polymorphic markers spanning chromosome 18. Subjects were interviewed by a psychiatrist and were diagnosed by highly reliable methods. Genotypes were generated with automated technology and were scored blind to phenotype. Affected sib pairs showed excess allele sharing at the 18q markers D18S541 and D18S38. A parent-of-origin effect was observed, but it was not consistently paternal. No robust evidence of linkage was detected for markers elsewhere on chromosome 18. Multipoint nonparametric linkage analysis in the new sample combined with the original sample of families supports linkage on chromosome 18q, but the susceptibility gene is not well localized.  相似文献   

8.
Nijmegen breakage syndrome (NBS) is a rare autosomal recessive disorder characterized by microcephaly, a birdlike face, growth retardation, immunodeficiency, lack of secondary sex characteristics in females, and increased incidence of lymphoid cancers. NBS cells display a phenotype similar to that of cells from ataxia-telangiectasia patients, including chromosomal instability, radiation sensitivity, and aberrant cell-cycle-checkpoint control following exposure to ionizing radiation. A recent study reported genetic linkage of NBS to human chromosome 8q21, with strong linkage disequilibrium detected at marker D8S1811 in eastern European NBS families. We collected a geographically diverse group of NBS families and tested them for linkage, using an expanded panel of markers at 8q21. In this article, we report linkage of NBS to 8q21 in 6/7 of these families, with a maximum LOD score of 3.58. Significant linkage disequilibrium was detected for 8/13 markers tested in the 8q21 region, including D8S1811. In order to further localize the gene for NBS, we generated a radiation-hybrid map of markers at 8q21 and constructed haplotypes based on this map. Examination of disease haplotypes segregating in 11 NBS pedigrees revealed recombination events that place the NBS gene between D8S1757 and D8S270. A common founder haplotype was present on 15/18 disease chromosomes from 9/11 NBS families. Inferred (ancestral) recombination events involving this common haplotype suggest that NBS can be localized further, to an interval flanked by markers D8S273 and D8S88.  相似文献   

9.
Cystinuria is a genetic disease manifested by the development of kidney stones. In some patients, the disease is caused by mutations in the SLC3A1 gene located on chromosome 2p. In others, the disease is caused by a gene that maps to chromosome 19q, but has not yet been cloned. Cystinuria is very common among Jews of Libyan ancestry living in Israel. Previously we have shown that the disease-causing gene in Libyan Jews maps to an 8-cM interval on chromosome 19q between the markers D19S409 and D19S208. Several markers from chromosome 19q showed strong linkage disequilibrium, and a specific haplotype was found in more than half of the carrier chromosomes. In this study we have analyzed Libyan Jewish cystinuria families with eight markers from within the interval containing the gene. Seven of these markers showed significant linkage disequilibrium. A common haplotype was found in 16 of the 17 carrier chromosomes. Analysis of historical recombinants placed the gene in a 1.8-Mb interval between the markers D19S430 and D19S874. Two segments of the historical carrier chromosome used to calculate the mutation's age revealed that the disease-causing mutation was introduced into this population 7-16 generations ago.  相似文献   

10.
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder that is associated with episodic recurrent brachial plexus neuropathy. A mutation for HNA maps to chromosome 17q25. To refine the HNA locus further, we carried out genetic linkage studies in seven pedigrees with a high density set of DNA markers from chromosome 17q25. All pedigrees demonstrated linkage to chromosome 17q25, and an analysis of recombinant events placed the HNA locus within an interval of approximately 1 Mb flanked by markers D17S722 and D17S802. In order to test the power of linkage disequilibrium mapping, we compared genotypes of 12 markers from seven pedigrees that were from the United States and that showed linkage to chromosome 17q25. The haplotypes identified a founder effect in six of the seven pedigrees with a minimal shared haplotype that further refines the HNA locus to an interval of approximately 500 kb. These findings suggest that, for the pedigrees from the United States, there are at least two different mutations in the HNA gene.  相似文献   

11.
Niemann-Pick type D (NPD) disease is a progressive neurodegenerative disorder characterized by the accumulation of tissue cholesterol and sphingomyelin. This disorder is relatively common in southwestern Nova Scotia, because of a founder effect. Our previous studies, using classic linkage analysis of this large extended kindred, defined the critical gene region to a 13-cM chromosome segment between D18S40 and D18S66. A recently isolated gene from this region, NPC1, is mutated in the majority of patients with Niemann-Pick type C disease. We have identified a point mutation within this gene (G3097-->T; Gly992-->Trp) that shows complete linkage disequilibrium with NPD, confirming that NPD is an allelic variant of NPC1.  相似文献   

12.
The TOR1A (DYT1) gene family and its role in early onset torsion dystonia   总被引:5,自引:0,他引:5  
Most cases of early onset torsion dystonia are caused by a 3-bp deletion (GAG) in the coding region of the TOR1A gene (alias DYT1, DQ2), resulting in loss of a glutamic acid in the carboxy terminal of the encoded protein, torsin A. TOR1A and its homologue TOR1B (alias DQ1) are located adjacent to each other on human chromosome 9q34. Both genes comprise five similar exons; each gene spans a 10-kb region. Mutational analysis of most of the coding region and splice junctions of TOR1A and TOR1B did not reveal additional mutations in typical early onset cases lacking the GAG deletion (N = 17), in dystonic individuals with apparent homozygosity in the 9q34 chromosomal region (N = 5), or in a representative Ashkenazic Jewish individual with late onset dystonia, who shared a common haplotype in the 9q34 region with other late onset individuals in this ethnic group. A database search revealed a family of nine related genes (50-70% similarity) and their orthologues in species including human, mouse, rat, pig, zebrafish, fruitfly, and nematode. At least four of these genes occur in the human genome. Proteins encoded by this gene family share functional domains with the AAA/HSP/Clp-ATPase superfamily of chaperone-like proteins, but appear to represent a distinct evolutionary branch.  相似文献   

13.
Peripheral neuropathy with or without agenesis of the corpus callosum (ACCPN) is a devastating neurodegenerative disorder that is transmitted as an autosomal recessive trait. Genealogical studies in a large number of affected French Canadian individuals suggest that ACCPN results from a single founder mutation. A genomewide search using 120 microsatellite DNA markers in 14 French Canadian families allowed the mapping of the ACCPN gene to a 5-cM region on chromosome 15q13-q15 that is flanked by markers D15S1040 and D15S118. A maximum two-point LOD score of 11.1 was obtained with the marker D15S971 at a recombination fraction of 0. Haplotype analysis and linkage disequilibrium support a founder effect. These findings are the first step in the identification of the gene responsible for ACCPN, which may shed some light on the numerous conditions associated with the progressive peripheral neuropathy or agenesis of the corpus callosum.  相似文献   

14.

Background

DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated.

Methodology/Principal Findings

We used Dyt1 knock out (Dyt1 KO), Dyt1 ΔGAG knock-in (Dyt1 KI), and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT) or human ΔGAG mutant allele (DYT1 hMT). D1R, D2R, and Gα(olf) protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60) male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14) male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf) protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice.

Conclusion/Significance

We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice) produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology.  相似文献   

15.
Variant late infantile neuronal ceroid lipofuscinosis (vLINCL) is an autosomal recessive progressive encephalopathy of childhood enriched in the western part of Finland, with a local incidence of 1 in 1500. We recently assigned the locus for vLINCL, CLN5, to 13q21.1-q32. In the present study, the haplotype analysis of Finnish CLN5 chromosomes provides evidence that one single mutation causes vLINCL in the Finnish population. Eight microsatellite markers closely linked to the CLN5 gene on chromosome 13q were analyzed, to study identity by descent by shared haplotype analysis. One single haplotype formed by flanking markers D13S160 and D13S162 in strong linkage disequilibrium (P < .0001) was present in 81% of disease-bearing chromosomes. Allele 4 at the marker locus D13S162 was detected in 94% of disease-bearing chromosomes. To evaluate the age of the CLN5 mutation by virtue of its restricted geographical distribution, church records were used to identify the common ancestors for 18 vLINCL families diagnosed in Finland. The pedigrees of the vLINCL ancestors merged on many occasions, which also supports a single founder mutation that obviously happened 20 to 30 generations ago (i.e., approximately 500 years ago) in this isolated population. Linkage disequilibrium was detected with seven markers covering an extended genetic distance of 11 cM, which further supports the young age of the CLN5 mutation. When the results of genealogical and linkage disequilibrium studies were combined, the CLN5 gene was predicted to lie approximately 200 - 400 kb (total range 30 - 1360 kb) from the closest marker D13S162.  相似文献   

16.
Migraine is a common neurological disease with a major genetic component. Recently, it has been proposed that a single locus on chromosome 19p13 contributes to the genetic susceptibility of both rare familial hemiplegic migraine (FHM) and more common types of migraine, migraine with aura and migraine without aura. We analyzed 16 families for co-segregation of migraine with aura and chromosome 19p13 markers. Using multipoint model-free linkage analysis, we obtained a lod score of 4.28 near D19S592. Using an affecteds-only model of linkage, we observed a lod score of 4.79 near D19S592. We were able to provide statistical evidence that this locus on chromosome 19p13 is most likely not the gene CACNA1A, mutations in which cause FHM. These data indicate that chromosome 19p13 contains a locus which contributes to the genetic susceptibility of migraine with aura that is distinct from the FHM locus.  相似文献   

17.
A genetic linkage map of human chromosome 9q.   总被引:5,自引:0,他引:5  
A genetic linkage map of human chromosome 9q, spanning a sex-equal distance of 125 cM, has been developed by genotyping 26 loci in the Venezuelan Reference Pedigree. The loci include 12 anonymous microsatellite markers reported by Kwiatkowski et al. (1992), several classical systems previously assigned to chromosome 9q, and polymorphisms for the genes tenacin (HXB), gelsolin (GSN), adenylate kinase 1 (AK1), arginosuccinate synthetase (ASS), ABL oncogene (ABL1), ABO blood group (ABO), and dopamine beta-hydroxylase (DBH). Only a marginally significant sex difference is found along the entire length of the map and results from one interval, between D9S58 and D9S59, that displays an excess of female recombination. A comparison of the genetic map to the existing physical data suggests that there is increased recombination in the 9q34 region with a recombination event occurring every 125-400 kb. This map should be useful in further characterizing the relationship between physical distance and genetic distance, as well as for genetic linkage studies of diseases that map to chromosome 9q, including multiple self-healing squamous epithelioma (MSSE), Gorlin syndrome (NBCCS), xeroderma pigmentosum (XPA), nail-patella syndrome (NPS1), torsion dystonia (DYT1), and tuberous sclerosis (TSC1).  相似文献   

18.
For the first time in Russia, analysis of the GCH-I and DYT1 genes was carried out for the purpose of direct DNA diagnostics in families with various forms of hereditary torsion dystonia (TD). Four new missense mutations (Met102Lys, Thr94Lys, Cys141Trp, and Ser176Thr) in the GCH-I gene were found in patients with dopa-responsive dystonia (DRD), testifying to a genetic heterogeneity of this clinical form of TD. The distribution of the major del GAG mutation in exon 5 of the DYT1 gene was studied in patients with non-dopa-responsive dystonia (NDRD). In total, the mutation was found in 68% of the patients. The frequency of this mutation in Ashkenazi Jews with NDRD was 100% (twice higher than in Slavonic families), suggesting the founder effect reported for NDRD in this ethnic group. Mutations of the GCH-I and DYT1 genes were also found in patients with atypical and questionable cases of TD, which are difficult to diagnose with methods other than DNA analysis. The data obtained made it possible to extend the spectrum of clinical signs of DRD and NDRD and to revise the views on true penetrance of the corresponding mutant genes, which is important for medical genetic counseling in affected families.  相似文献   

19.
The DYT1 gene responsible for early-onset, idiopathic torsion dystonia (ITD) in the Ashkenazi Jewish population, as well as in one large non-Jewish family, has been mapped to chromosome 9q32-34. Using (GT)n and RFLP markers in this region, we have identified obligate recombination events in some of these Jewish families, which further delineate the area containing the DYT1 gene to a 6-cM region bounded by loci AK1 and ASS. In 52 unrelated, affected Ashkenazi Jewish individuals, we have found highly significant linkage disequilibrium between a particular extended haplotype at the ABL-ASS loci and the DYT1 gene. The 4/A12 haplotype for ABL-ASS is present on 69% of the disease-bearing chromosomes among affected Jewish individuals and on only 1% of control Jewish chromosomes (chi 2 = 91.07, P much less than .001). The allelic association between this extended haplotype and DYT1 predicts that these three genes lie within 1-2 cM of each other; on the basis of obligate recombination events, the DYT1 gene is centromeric to ASS. Furthermore, this allelic association supports the idea that a single mutation event is responsible for most hereditary cases of dystonia in the Jewish population. Of the 53 definitely affected typed, 13 appear to be sporadic, with no family history of dystonia. However, the proportion of sporadic cases which potentially carry the A12 haplotype at ASS (8/13 [62%]) is similar to the proportion of familial cases with A12 (28/40 [70%]). This suggests that many sporadic cases are hereditary, that the disease gene frequency is greater than 1/15,000, and that the penetrance is lower than 30%, as previously estimated in this population. Most affected individuals were heterozygous for the ABL-ASS haplotype, a finding supporting autosomal dominant inheritance of the DYT1 gene. The ABL-ASS extended-haplotype status will provide predictive value for carrier status in Jewish individuals. This information can be used for molecular diagnosis, evaluation of subclinical expression of the disease, and elucidation of environmental factors which may modify clinical symptoms.  相似文献   

20.
Deletions of regions at 13q14 have been detected by various genetic approaches in human cancers including prostate cancer. Several studies have defined one region of loss of heterozygosity (LOH) at 13q14 that seems to reside in a DNA segment of 7.1 cM between genetic markers D13S263 and D13S153. To define the smallest region of overlap (SRO) for deletion at 13q14, we first applied tissue microdissection and multiplex PCR to detect homozygous deletion and/or hemizygous deletion at 13q14 in 134 prostate cancer specimens from 114 patients. We detected deletions at markers D13S1227, D13S1272, and A005O48 in 13 (10%) of these tumor specimens. Of the 13 tumors with deletions, 12 were either poorly differentiated primary tumors or metastases of prostate cancer. To fine-map the deletion region, we then constructed a high-resolution YAC/BAC/STS/EST physical map based on experimental and database analyses. Several markers encompassing the deletion region were analyzed for homozygous deletion and/or hemizygous deletion in 61 cell lines/xenografts derived from human cancers of the prostate, breast, ovary, endometrium, cervix, and bladder, and a region of deletion was defined by duplex PCR assay between markers A005X38 and WI-7773. We also analyzed LOH at 13q14 in the 61 cell lines/xenografts using the homozygosity mapping of deletion approach and 26 microsatellite markers. We found 24 (39%) of the cell lines/xenografts to show LOH at 13q14 and defined a region of LOH by markers M1 and M5. Combination of homozygous or hemizygous deletion and LOH results defined the SRO for deletion to be an 800-kb DNA interval between A005X38 and M5. There are six known genes located in or close to the SRO for deletion. This region of deletion is at least 2 Mb centromeric to the RB1 tumor-suppressor gene and the leukemia-associated genes 1 and 2, each of which is located at 13q14. These data suggest that the 800-kb DNA segment with deletion contains a gene whose deletion may be important for the development of prostate and other cancers. This study also provides a framework for the fine-mapping, cloning, and identification of a novel tumor-suppressor gene at 13q14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号