首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the evolution of hepatocytes isolated from 21-day fetuses and transplanted into spleens of Nagase analbuminemic rats which have negligible serum albumin levels due to a mutation affecting albumin mRNA processing. Albumin and alpha-fetoprotein expression, in addition to other parameters related to cellular proliferation status (thymidine kinase and proliferating cell nuclear antigen expression) were studied as indicative of the behavior and evolution of the cells. In recipient rats, only a few clusters of hepatocytes could be observed in the red pulp of the spleen 24 h after transplantation. The fetal hepatocytes migrated to the liver and could be seen in portal branches immediately after transplantation. Fifteen days later, albumin mRNA was detected in recipient livers and was expressed throughout the entire 3-month study. Alpha-fetoprotein was not detected. Cell proliferation was not relevant, although 3 months after transplantation, the proliferation rates appeared to show a tendency to increase. These data demonstrate that fetal hepatocytes transplanted into spleen migrate to liver, settle there and acquire an adult phenotype free of malignant transformation. Our study is a first step towards the thorough understanding of fetal hepatocyte transplantation. The next steps will involve in-depth studies of the possibilities of genetic manipulation to achieve a high degree of repopulation/expression, employing the least possible number of donor cells, and of how the cells reach the liver parenchyma, overcoming the endothelial barrier.  相似文献   

2.

Background and Aims

Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders.

Methods

Hepatocytes (107) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (1011 particles) was injected intravenously 24 hr after transplantation.

Results

Three months after hepatocyte transplantation in DPPIV rats, 30–60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17±0.78 mg/dl to 0.96±0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation.

Conclusions

As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.  相似文献   

3.
Transplanted hepatocytes integrate in the liver parenchyma and exhibit gene expression patterns that are similar to adjacent host hepatocytes. To determine the fate of genetically marked hepatocytes in the context of hepatocellular proliferation throughout the rodent life span, we transplanted Fischer 344 (F344) rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. The proliferative activity in transplanted hepatocytes was studied in animals ranging in age from a few days to 2 yr. Transplanted hepatocytes proliferated during liver development between 1 and 6 wk of age, each dividing an estimated two to five times. DNA synthesis in occasional cells was demonstrated by localizing bromodeoxyuridine incorporation. There was no evidence for transplanted cell proliferation between 6 wk and 1 yr of age. Subsequently, transplanted cells proliferated again, with increased sizes of transplanted cell clusters at 18 and 24 mo of age. The proliferative activity of transplanted cells was greater in rats entering senescence compared with during postnatal liver development. In old rats, some liver lobules were composed entirely of transplanted cells. We conclude that hepatocyte proliferation in the livers of very young and old F344 rats is regulated in a temporally determined, biphasic manner. The findings will be relevant to mechanisms concerning liver development, senescence, and oncogenesis, as well as to cell and gene therapy.  相似文献   

4.
Terry C  Dhawan A  Mitry RR  Hughes RD 《Cryobiology》2006,53(2):149-159
Hepatocytes isolated from unused donor livers are being used for transplantation in patients with acute liver failure and liver-based metabolic defects. As large numbers of hepatocytes can be prepared from a single liver and hepatocytes need to be available for emergency and repeated treatment of patients it is essential to be able to cryopreserve and store cells with good thawed cell function. This review considers the current status of cryopreservation of human hepatocytes discussing the different stages involved in the process. These include pre-treatment of cells, freezing solution, cryoprotectants and freezing and thawing protocols. There are detrimental effects of cryopreservation on hepatocyte structure and metabolic function, including cell attachment, which is important to the engraftment of transplanted cells in the liver. Cryopreserved human hepatocytes have been successfully used in clinical transplantation, with evidence of replacement of missing function. Further optimisation of hepatocyte cryopreservation protocols is important for their use in hepatocyte transplantation.  相似文献   

5.
In developing therapeutic alternatives to liver transplantation, we have used the strategy of applying a small intestinal segment as a scaffold for hepatocyte transplantation and also as a portocaval shunt (PCS) system to address both liver dysfunction and portal hypertension. The aim of this study was to investigate the feasibility of such an intestinal segment in animal models. Hepatocytes isolated from luciferase-transgenic Lewis rats were transplanted into jejunal segments of wild-type Lewis rats with mucosa removal without PCS application. Luciferase-derived luminescence from transplanted hepatocytes was stably detected for 30 days. Then, we performed autologous hepatocyte transplantation into the submucosal layer of an isolated and vascularized small intestinal segment in pigs. Transplanted hepatocytes were isolated from the resected left-lateral lobe of the liver. On day 7, hepatocyte clusters and bile duct-like structures were observed histologically. To create an intestinal PCS system in pigs, an auto-graft of the segmental ileum and interposing vessel graft were anastomosed to the portal vein trunk and inferior vena cava. However, thrombi were observed in vessels of the intestinal PCSs. We measured the correlation between infusion pressure and flow volume in whole intestines ex vivo in both species and found that the high pressure corresponding to portal hypertension was still insufficient to maintain the patency of the intestinal grafts. In conclusion, we demonstrated the feasibility of the small intestine as a scaffold for hepatocyte transplantation in rat and pig models, but PCS using an intestinal graft failed to maintain patency in a pig model.  相似文献   

6.

Background and Aim

Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP.

Methods

Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison.

Results

All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14.

Conclusion

GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results.  相似文献   

7.
Liver-directed gene therapy is appropriate for many conditions. Recent work established that liver repopulation with transplanted cells can be effective in treating genetic disorders. Although hepatocytes express therapeutic genes with considerable efficiency, correction of genetic disorders is constrained by limitations in permanent gene transfer into hepatocytes and repopulation of the liver with transplanted cells. Adenoviral vectors are highly efficient for hepatic gene transfer but the onset of deleterious host immune responses against adenoviral vectors, along with clearance of transduced hepatocytes have caused problems. Nonetheless, recent work concerning engraftment and proliferation of transplanted hepatocytes in the liver has provided significant new information, which should refocus interest in hepatocyte-based therapies. Moreover, hepatocyte transplantation systems offer creative tools for defining critical mechanisms in gene regulation and survival of transduced cells.  相似文献   

8.
Cell transplantation into hepatic sinusoids, which is necessary for liver repopulation, could cause hepatic ischemia. To examine the effects of cell transplantation on host hepatocytes, we transplanted Fisher 344 rat hepatocytes into syngeneic dipeptidyl peptidase IV-deficient rats. Within 24 h of cell transplantation, areas of ischemic necrosis, along with transient disruption of gap junctions, appeared in the liver. Moreover, host hepatocytes expressed gamma-glutamyl transpeptidase (GGT) extensively, which was observed even 2 years after cell transplantation. GGT expression was not associated with alpha-fetoprotein activation, which is present in progenitor cells. Increased GGT expression was apparent after transplantation of nonparenchymal cells and latex beads but not after injection of saline, fragmented hepatocytes, hepatocyte growth factor, or turpentine. Some host hepatocytes exhibited apoptosis, as well as DNA synthesis, between 24 and 48 h after cell transplantation. Changes in gap junctions, GGT expression, DNA synthesis, and apoptosis after cell transplantation were prevented by vasodilators. The findings indicated the onset of ischemic liver injury after cell transplantation. These hepatic perturbations must be considered when transplanted cells are utilized as reporters for biological studies.  相似文献   

9.
Application of liver stem cells for cell therapy   总被引:3,自引:0,他引:3  
The worldwide shortage of donor livers to transplant end stage liver disease patients has prompted the search for alternative cell therapies for intractable liver disease. Embryonic stem cells can be readily differentiated into hepatocytes, and their transplantation into animals has improved liver function in the absence of teratoma formation: their use in bioartificial liver support is an obvious application. In animal models of liver disease, adopting strategies to provide a selective advantage for transplanted foetal or adult hepatocytes have proved highly effective in repopulating recipient livers, but the poor success of today's hepatocyte transplants can be attributed to the lack of a clinically applicable procedure to force a similar repopulation of the human liver. The activation of bipotential hepatic progenitor cells is clearly vital for survival in many cases of acute liver failure, but surprisingly little progress has been made with these cells in terms of transplantation. Finally there is the controversial subject of autologous bone marrow, and while the contribution of these indigenous cells to liver turnover seems at best, trivial, results from a small number of phase 1 studies of transplantation of bone marrow to cirrhotic patients have been moderately encouraging.  相似文献   

10.
While organ-specific stem cells with roles in tissue injury repair have been documented, their pathogenic significance in diseases and the factors potentially responsible for their activation remain largely unclear. In the present study, heart, kidney, brain, and skin samples from F344 transgenic rats carrying the GFP gene were transplanted into normal F344 rat liver one day after an intraperitoneal injection (i.p.) of carbon tetrachloride (CCl(4)) to test their differentiation capacity. The transplantation was carried out by female donors to male recipients, and vice versa. One week after transplantation, GFP antigen-positive cells with phenotypic characteristics of hepatocytes were noted. After two weeks, their extent increased, and at 4 weeks, large areas of strongly GFP-stained cells developed. All recipient livers had GFP antigen-positive hepatocyte cells. PCR analysis coupled with laser capture micro-dissection (LCM) revealed those cells to contain GFP DNA. Thus, our results indicate that tissue stem cells have multipotential ability, differentiating into hepatocytes when transplanted into an injured liver.  相似文献   

11.
We have used monoclonal antibodies against cell-surface developmental epitopes in combination with micromagnetic beads to isolate phenotypically defined subpopulations of cholangiocyte marker-positive fetal liver epithelial cells (CMP-FLEC). Differentiation potential was evaluated by injecting cell isolates from dipeptidyl peptidase IV (DPPIV) positive (DPPIV+) Fischer donor rats into the spleen of partially hepatectomized, DPPIV negative (DPPIV-) Fischer host rats exposed to retrorsine. At various time points, liver tissue was harvested and cells in DPPIV+ colonies were phenotyped by immunofluorescence and histochemical protocols. Functional differentiation and liver replacement were determined by comparing donor and host hepatocyte protein expression patterns and DPPIV enzyme activity in extracts from livers of host rats receiving CMP-FLEC. Our results showed that bipotentiality was retained during differentiation and maturation of CMP-FLEC, indicating that the acquisition of ductal morphology and phenotype were not indicative of lineage commitment. CMP-FLEC transplanted into the adult rat liver lost ductal and gained hepatocyte markers, and acquired protein expression patterns in 2D gels with a close similarity (>75% spot match) to host hepatocytes but differing significantly from the transplanted CMP-FLEC cell isolate (<25% spot match). The average size of donor hepatocyte colonies increased with time so that by 1 year, up to 70% of the host rat liver was replaced by CMP-FLEC derived DPPIV+ hepatocytes. Depletion of CMP-FLEC from fetal liver isolates resulted in a marked decrease in adult liver colonization, suggesting that a high percentage of the hepatocyte colonies in animals receiving total fetal liver isolates are derived from CMP-FLEC.  相似文献   

12.
Liver diseases are associated with a marked reduction in the viable mass of hepatocytes. The most severe cases of liver disease (liver failure) are treated by orthotopic liver transplantation. One alternative to whole organ transplantation for patients with hepatic failure (and hereditary liver disease) is hepatocyte transplantation. However, there is a serious limitation to the treatment of liver diseases either by whole organ or hepatocyte transplantation, and that is the shortage of organ donors. Therefore, to overcome the problem of organ shortage, additional sources of hepatocytes must be found. Alternative sources of cells for transplantation have been proposed including embryonic stem cells, immortalised liver cells and differentiated cells. One other source of cells for transplantation found in the adult liver is the progeny of stem cells. These cells are termed hepatic progenitor cells (HPCs). The therapeutic potential of HPCs lies in their ability to proliferate and differentiate into hepatocytes and cholangiocytes. However, using HPCs as a cell therapy cannot be exploited fully until the mechanisms governing hepatocyte differentiation are elucidated. Here, we discuss the fundamental cellular and molecular elements required for HPC differentiation to hepatocytes.  相似文献   

13.
Grompe M 《Human cell》1999,12(4):171-180
Orthotopic liver transplantation is the treatment of choice for many inherited and acquired liver diseases. Unfortunately, the supply of donor organs is limiting and therefore many patients cannot benefit from this therapy. In contrast, hepatocyte suspensions can be isolated from a single donor liver can be transplanted into several hosts, and this procedure may help overcome the shortage in donor livers. In classic hepatocyte transplantation, however, only 1% of the liver mass or less can be replaced by donor cells. Recently though, we have used a mouse model of hereditary tyrosinemia to show that > 90% of host hepatocytes can be replaced by a small number of transplanted donor cells in a process we term "therapeutic liver repopulation". This phenomenon is analogous to repopulation of the hematopoietic system after bone marrow transplantation. Liver repopulation occurs when transplanted cells have a growth advantage in the setting of damage to recipient liver cells. Here we will review the current knowledge of this process and discuss the hopeful implications for treatment of liver diseases.  相似文献   

14.
Hepatocyte transplantation as a substitute strategy of orthotopic liver transplantation is being studied for treating end-stage liver diseases. Several technical hurdles must be overcome in order to achieve the therapeutic liver repopulation, such as the problem of insufficient expansion of the transplanted hepatocytes in recipient livers. In this study, we analyzed the application of FoxM1, a cell-cycle regulator, to enhance the proliferation capacity of hepatocytes. The non-viral sleeping beauty (SB) transposon vector carrying FoxM1 gene was constructed for delivering FoxM1 into the hepatocytes. The proliferation capacities of hepatocytes with FoxM1 expression were examined both in vivo and in vitro. Results indicated that the hepatocytes with FoxM1 expression had a higher proliferation rate than wild-type (WT) hepatocytes in vitro. In comparison with WT hepatocytes, the hepatocytes with FoxM1 expression had an enhanced level of liver repopulation in the recipient livers at both sub-acute injury (fumaryl acetoacetate hydrolase (Fah)–/– mice model) and acute injury (2/3 partial hepatectomy mice model). Importantly, there was no increased risk of tumorigenicity with FoxM1 expression in recipients even after serial transplantation. In conclusion, expression of FoxM1 in hepatocytes enhanced the capacity of liver repopulation without inducing tumorigenesis. FoxM1 gene delivered by non-viral SB vector into hepatocytes may be a viable approach to promote therapeutic repopulation after hepatocyte transplantation.  相似文献   

15.
Cholesterol ester hydrolase activity was measured in isolated rat hepatocytes and adipocytes. Administration of triiodothyronine to rats resulted in a specific and selective increase in lysosomal acid (pH 4.5) cholesterol ester hydrolase activity in hepatocytes. Since the majority of lipoprotein degradation occurs in liver parenchymal cells (hepatocytes), the stimulation of liver (hepatocyte) acid cholesterol ester hydrolase activity by triiodothyronine could contribute to the hypocholesterolemic action of thyroid hormones. Treatment of rats with 17 alpha-ethynylestradiol to increase the hepatic degradation of lipoprotein did not change acid cholesterol ester hydrolase activity in liver, indicating that the thyroid hormone induced stimulation of acid cholesterol ester hydrolase activity in hepatocytes is not a secondary effect owing to the increased hepatic catabolism of low density lipoproteins (LDL). In contrast to the results with hepatocytes, hyperthyroidism did not increase acid cholesterol ester hydrolase activity in rat adipocytes.  相似文献   

16.
Overt neoplasia is often the end result of a long biological process beginning with the appearance of focal lesions of altered tissue morphology. While the putative clonal nature of focal lesions has often been emphasized, increasing attention is being devoted to the possible role of an altered growth pattern in the evolution of carcinogenesis. Here we compare the growth patterns of normal and nodular hepatocytes in a transplantation system that allows their selective clonal proliferation in vivo. Rats were pre-treated with retrorsine, which blocks the growth of resident hepatocytes, and were then transplanted with hepatocytes isolated from either normal liver or hepatocyte nodules. Both cell types were able to proliferate extensively in the recipient liver, as expected. However, their growth pattern was remarkably different. Clusters of normal hepatocytes integrated in the host liver, displaying a normal histology; however, transplanted nodular hepatocytes formed new hepatocyte nodules, with altered morphology and sharp demarcation from surrounding host liver. Both the expression and distribution of proteins involved in cell polarity, cell communication, and cell adhesion, including connexin 32, E-cadherin, and matrix metalloproteinase-2, were altered in clusters of nodular hepatocytes. Furthermore, we were able to show that down-regulation of connexin 32 and E-cadherin in nodular hepatocyte clusters was independent of growth rate. These results support the concept that a dominant pathway towards neoplastic disease in several organs involves defect(s) in tissue pattern formation.  相似文献   

17.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   

18.
Monkey embryonic stem (ES) cells have characteristics that are similar to human ES cells, and might be useful as a substitute model for preclinical research. When embryoid bodies (EBs) formed from monkey ES cells were cultured, expression of many hepatocyte-related genes including cytochrome P450 (Cyp) 3a and Cyp7a1 was observed. Hepatocytes were immunocytochemically observed using antibodies against albumin (ALB), cytokeratin-8/18, and α1-antitrypsin in the developing EBs. The in vitro differentiation potential of monkey ES cells into the hepatic lineage prompted us to examine the transplantability of monkey EB cells. As an initial approach to assess the repopulation potential, we transplanted EB cells into immunodeficient urokinase-type plasminogen activator transgenic mice that undergo liver failure. After transplantation, the hepatocyte colonies expressing monkey ALB were observed in the mouse liver. Fluorescence in-situ hybridization revealed that the repopulating hepatocytes arise from cell fusion between transplanted monkey EB cells and recipient mouse hepatocytes. In contrast, neither cell fusion nor repopulation of hepatocytes was observed in the recipient liver after undifferentiated ES cell transplantation. These results indicate that the differentiated cells in developing monkey EBs, but not contaminating ES cells, generate functional hepatocytes by cell fusion with recipient mouse hepatocytes, and repopulate injured mouse liver.  相似文献   

19.
The dynamics of cell renewal in the normal adult liver remains an unresolved issue. We investigate the possible contribution of a common biliary precursor cell pool to hepatocyte turnover in the chimeric long-term repopulated rat liver. The retrorsine (RS)-based model of massive liver repopulation was used. Animals not expressing the CD26 marker (CD26-) were injected with RS, followed by transplantation of 2 million syngeneic hepatocytes isolated from a normal CD26-expressing donor. Extensive (80-90 %) replacement of resident parenchymal cells was observed at 1 year post-transplantation and persisted at 2 years, as expected. A panel of specific markers, including cytokeratin 7, OV6, EpCAM, claudin 7 and α-fetoprotein, was employed to locate the in situ putative progenitor and/or biliary epithelial cells in the stably repopulated liver. No overlap was observed between any of these markers and the CD26 tag identifying transplanted cells. Exposure to RS was not inhibitory to the putative progenitor and/or biliary epithelial cells, nor did we observe any evidence of cell fusion between these cells and the transplanted cell population. Given the long-term (>2 years) stability of the donor cell phenotype in this model of liver repopulation, the present findings suggest that hepatocyte turnover in the repopulated liver is fuelled by a cell lineage distinct from that of the biliary epithelium and relies largely on the differentiated parenchymal cell population. These results support the solid biological foundation of liver repopulation strategies based on the transplantation of isolated hepatocytes.  相似文献   

20.

Backgrounds and Aims

When hepatocyte proliferation is impaired, liver regeneration proceeds from the division of non parenchymal hepatocyte progenitors. Oval cells and Small Hepatocyte-like Progenitor Cells (SHPCs) represent the two most studied examples of such epithelial cells with putative stem cell capacity. In the present study we wished to compare the origin of SHPCs proliferating after retrorsine administration to the one of oval cells observed after 2-Acetyl-Amino fluorene (2-AAF) treatment.

Methodology/Principal Findings

We used retroviral-mediated nlslacZ genetic labeling of dividing cells to study the fate of cells in the liver. Labeling was performed either in adult rats before treatment or in newborn animals. Labeled cells were identified and characterised by immunohistochemistry. In adult-labeled animals, labeling was restricted to mature hepatocytes. Retrorsine treatment did not modify the overall number of labeled cells in the liver whereas after 2-AAF administration unlabeled oval cells were recorded and the total number of labeled cells decreased significantly. When labeling was performed in newborn rats, results after retrorsine administration were identical to those obtained in adult-labeled rats. In contrast, in the 2-AAF regimen numerous labeled oval cells were present and were able to generate new labeled hepatocytes. Furthermore, we also observed labeled biliary tracts in 2-AAF treated rats.

Conclusions

Our results srongly suggest that SHPCs are derived from hepatocytes and we confirm that SHPCs and oval cells do not share the same origin. We also show that hepatic progenitors are labeled in newborn rats suggesting future directions for in vivo lineage studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号