首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Changes of the volatile organic compounds (VOC) emission capacity and composition of different developmental stages of the tropical tree species Hymenaea courbaril were investigated under field conditions at a remote Amazonian rainforest site. The basal emission capacity of isoprene changed considerably over the course of leaf development, from young to mature and to senescent leaves, ultimately spanning a wide range of observed isoprene basal emission capacities from 0.7 to 111.5 µg C g?1 h?1 during the course of the year. By adjusting the standard emission factors for individual days, the diel courses of instantaneous isoprene emission rates could nevertheless adequately be modelled by a current isoprene algorithm. The results demonstrate the inadequacy of using one single standard emission factor to represent the VOC emission capacity of tropical vegetation for an entire seasonal cycle. A strong linear correlation between the isoprene emission capacity and the gross photosynthetic capacity (GPmax) covering all developmental stages and seasons was observed. The present results provide evidence that leaf photosynthetic properties may confer a valuable basis to model the seasonal variation of isoprenoid emission capacity; especially in tropical regions where the environmental conditions vary less than in temperate regions. In addition to induction and variability of isoprene emission during early leaf development, considerable amounts of monoterpenes were emitted in a light‐dependent manner exclusively in the period between bud break and leaf maturity. The fundamental change in emission composition during this stage as a consequence of resource availability (supply side control) or as a plant's response to the higher defence demand of young emerging leaves (demand‐side control) is discussed. The finding of a temporary emergence of monoterpene emission may be of general interest in understanding both the ecological functions of isoprenoid production and the regulatory processes involved.  相似文献   

2.
Biogenic VOC emissions from forested Amazonian landscapes   总被引:1,自引:0,他引:1  
A tethered balloon‐sampling platform was used to study biogenic volatile organic compounds (BVOCs) in the atmospheric boundary layer in three distinct moist tropical forest ecoregions, as well as an extensive pasture area, in Amazonia. Approximately 24–40 soundings, including as many as four VOC samples collected simultaneously at various altitudes, were made at each site. Concentrations in the mixed layer increased during morning hours and were relatively constant midday through afternoon. Since most important meteorological and chemical parameters were very similar among the sites during the measurement periods, a BVOC canopy emission model was used with a model of the chemistry of the boundary layer to reproduce the atmospheric concentrations observed. The simulations indicated significantly different midday landscape isoprene and α‐pinene emission rates for the three forest ecoregions (2200, 5300, 9800 μg m?2 h?1 isoprene and 90, 120, and 180 μg m?2 h?1α‐pinene for the three moist forest ecoregions studied, respectively). The differences in emissions among the ecoregions may be attributed to the species composition, which were markedly different and in which the percentage of isoprene and terpene emitting species also differed significantly.  相似文献   

3.
Controls on isoprene emission from trees in a subtropical dry forest   总被引:5,自引:1,他引:4  
Isoprene emission from vegetation is the single most important source of photochemically active reduced compounds to the atmosphere. We present the first controlled-environment measurements of isoprene emission from leaves of tropical forest trees. Our studies were conducted in the Guanica State Forest in Puerto Rico. We report the effects of temperature and light variations on biogenic isoprene emissions during 1995. Maximum emission rates varied among species from 0 to 268 nmol m?2 s?1. Values at the upper end of this range of maximum emission rates are 2–3 times higher than values reported from any temperate taxa. Isoprene emission showed strong sensitivity to light and temperature variations. In contrast to temperate plants, whose emissions tend to saturate at a light intensity of ~1000 μmol m?2 s?1, emissions from the tropical species increased with light intensity up to 2500 μmol m?2 s?1. The temperature optima for emissions from these plants were similar to those previously reported for temperate plants: ~40 °C. The high maximum emission rates and lack of light saturation indicate that estimates of isoprene emission from tropical forests need to be revised upwards.  相似文献   

4.
Biogenic volatile organic compounds (BVOC) emissions from bioenergy crops may differ from those of conventional crops. We compared emission rates of isoprene and a number of monoterpenes from the lignocellulosic bioenergy crops short‐rotation coppice (SRC) willow and Miscanthus, with the conventional crops wheat and oilseed rape. BVOC emission rates were measured via dynamic vegetation enclosure and GC‐MS analysis approximately monthly between April 2010 and August 2012 at a location in England and from SRC willow at two locations in Scotland. The largest BVOC emission rates were measured from willow in England and varied between years. Isoprene emission rates varied between μg g?1 h?1. Of the monoterpenes detected from willow, α‐pinene emission rates were highest (μg g?1 h?1), followed by μg g?1 h?1 for δ‐3‐carene, μg g?1 h?1 for β‐pinene and μg g?1 h?1 for limonene. BVOC emission rates measured in Scotland were much lower. Low emission rates of isoprene and α‐pinene were measured from Miscanthus in 2010 (μg g?1 h?1 and μg g?1 h?1, respectively) but were not detected in subsequent years. Emission rates from wheat of isoprene were negligible but relatively high for monoterpenes (μg g?1 h?1 and μg g?1 h?1 for α‐pinene and limonene, respectively). No significant emission rates of BVOCs were measured from oilseed rape. The measured emission rates followed a clear seasonal trend. Crude extrapolations based solely on data gathered here indicate that isoprene emissions from willow could correspond to 0.004–0.03% (UK) and 0.76–5.5% (Europe) of current global isoprene if 50% of all land potentially available for bioenergy crops is planted with willow.  相似文献   

5.
Interannual variations of photosynthesis in tropical seasonally dry vegetation are one of the dominant drivers to interannual variations of atmospheric CO2 growth rate. Yet, the seasonal differences in the response of photosynthesis to climate variations in these ecosystems remain poorly understood. Here using Normalized Difference Vegetation Index (NDVI), we explored the response of photosynthesis of seasonally dry tropical vegetation to climatic variations in the dry and the wet seasons during the past three decades. We found significant (p < 0.01) differences between dry and wet seasons in the interannual response of photosynthesis to temperature (γint) and to precipitation (δint). γint is ~1% °C?1 more negative and δint is ~8% 100 mm?1 more positive in the dry season than in the wet season. Further analyses show that the seasonal difference in γint can be explained by background moisture and temperature conditions. Positive γint occurred in wet season where mean temperature is lower than 27°C and precipitation is at least 60 mm larger than potential evapotranspiration. Two widely used Gross Primary Productivity (GPP) estimates (empirical modeling by machine‐learning algorithm applied to flux tower measurements, and nine process‐based carbon cycle models) were examined for the GPP–climate relationship over wet and dry seasons. The GPP derived from empirical modeling can partly reproduce the divergence of γint, while most process models cannot. The overestimate by process models on negative impacts by warmer temperature during the wet season highlights the shortcomings of current carbon cycle models in representing interactive impacts of temperature and moisture on photosynthesis. Improving representations on soil water uptake, leaf temperature, nitrogen cycling, and soil moisture may help improve modeling skills in reproducing seasonal differences of photosynthesis–climate relationship and thus the projection for impacts of climate change on tropical carbon cycle.  相似文献   

6.
Response of soil respiration (CO2 emission) to simulated nitrogen (N) deposition in a mature tropical forest in southern China was studied from October 2005 to September 2006. The objective was to test the hypothesis that N addition would reduce soil respiration in N saturated tropical forests. Static chamber and gas chromatography techniques were used to quantify the soil respiration, following four‐levels of N treatments (Control, no N addition; Low‐N, 5 g N m?2 yr?1; Medium‐N, 10 g N m?2 yr?1; and High‐N, 15 g N m?2 yr?1 experimental inputs), which had been applied for 26 months before and continued throughout the respiration measurement period. Results showed that soil respiration exhibited a strong seasonal pattern, with the highest rates found in the warm and wet growing season (April–September) and the lowest rates in the dry dormant season (December–February). Soil respiration rates showed a significant positive exponential relationship with soil temperature, whereas soil moisture only affect soil respiration at dry conditions in the dormant season. Annual accumulative soil respiration was 601±30 g CO2‐C m?2 yr?1 in the Controls. Annual mean soil respiration rate in the Control, Low‐N and Medium‐N treatments (69±3, 72±3 and 63±1 mg CO2‐C m?2 h?1, respectively) did not differ significantly, whereas it was 14% lower in the High‐N treatment (58±3 mg CO2‐C m?2 h?1) compared with the Control treatment, also the temperature sensitivity of respiration, Q10 was reduced from 2.6 in the Control with 2.2 in the High‐N treatment. The decrease in soil respiration occurred in the warm and wet growing season and were correlated with a decrease in soil microbial activities and in fine root biomass in the N‐treated plots. Our results suggest that response of soil respiration to atmospheric N deposition in tropical forests is a decline, but it may vary depending on the rate of N deposition.  相似文献   

7.
Isoprene emission from plants accounts for nearly half of all non‐methane hydrocarbons entering the atmosphere. Light and temperature regulate the instantaneous rate of isoprene emission but there is increasing evidence that they also affect the capacity for isoprene emission (i.e. the rate measured under standard conditions). We tested the rate of acclimation of the capacity for isoprene emission following step changes in growth conditions. Acclimation to new growth temperatures was very rapid, with most of the change occurring within a few hours and complete adjustment occurring within a day. Acclimation to new light levels was more complicated. Following a switch from low‐light growth conditions to standard assay conditions (30 °C and 1000 µmol photons m?2 s?1), there was a rapid (5–10 min) and a slightly slower (10–50 min) acclimation of the capacity for isoprene emission. After accounting for these short‐term changes, there was also a small, long‐term (4–6 d) acclimation of the isoprene emission capacity to the light level of growth conditions. We found no effect of growth conditions on the coefficients used to describe the instantaneous light and temperature response of isoprene emission. Therefore, current models of isoprene emission will only need to be altered to account for changes in the capacity for isoprene emission.  相似文献   

8.
We monitored soil CO 2 effluxes for over 3 years in a seasonally wet tropical forest in Central Panama using automated and manual measurements from 2013 to 2016. The measurements displayed a high degree of spatial and temporal variability. Temporal variability could be largely explained by surface soil water dynamics over a broad range of temporal scales. Soil moisture was responsible for seasonal cycles, diurnal cycles, intraseasonal variability such as rain‐induced pulses following dry spells, as well as suppression during near saturated conditions, and ultimately, interannual variability. Spatial variability, which remains largely unexplained, revealed an emergent role of forest structure in conjunction with physical drivers such as soil temperature and topography. Mean annual soil CO 2 effluxes (±SE ) amounted to 1,613 (±59) gC  m?2 year?1 with an increasing trend in phase with an El Niño/Southern Oscillation (ENSO ) cycle which culminated with the strong 2015–2016 event. We attribute this trend to a relatively mild wet season during which soil saturated conditions were less persistent.  相似文献   

9.
Lophognathus temporalis is an arboreal lizard from the wet–dry tropics of Australia. During the wet season the field metabolic rate (FMR) of the lizards was 209 kJ kg?1 d?1, but during the dry season FMR was only 62 kJ kg?1 d?1. Similarly, water flux decreased from 73.6 mL kg?1 d?1 in the wet season to 18.5 mL kg?1 d?1 in the dry season. Body temperatures (Tb) were significantly lower in the dry season, and operative temperatures, calculated by incorporating microclimatic data with characteristics of the lizards, indicated that the seasonal shift was due to changes in thermoregulatory behaviour rather than limitations of the thermal environment. By combining field measurements of Tb and FMR with laboratory measurements of standard metabolic rate over a range of Tb, we were able to subdivide the FMR into its components and to determine which factors contributed to the seasonal reduction in energy expenditure. During the dry season, lizards used 147 kJ kg?1 d?1 less energy than during the wet season, and 24% of this decrease was estimated to be due to the passive effects of lower nighttime Tb, 14% was due to the active selection of lower daytime Tb, 27% was due to the physiological shift to lower standard metabolic rates, and 35% was due to reduced activity in the dry season. Although the population size remained relatively constant (107 lizards ha?1 during the wet season and 125 lizards ha?1 during the dry season), the population structure changed, reflecting the seasonal patterns of recruitment and mortality. The number of lizards active at any one time was much lower in the dry season, reflecting the lower levels of activity in this season. The energy expenditure of the population of L. temporalis was 612 kJ ha?1 d?1 during the wet season and 113 kJ ha?1 d?1 during the dry season.  相似文献   

10.
1. Hong Kong streams are subject to aggressive water extractions but the downstream water needs of ecosystems – i.e. environmental flow (e‐flow) requirements – have not yet been addressed. This study investigated hydro‐ecological relationships that could be used to establish e‐flow allocations for streams in monsoonal Hong Kong. 2. Data were collected during the wet and dry seasons from 10 unpolluted streams experiencing a gradient of flow reductions (c. 0–98%). Relationships between flow conditions (percentage discharge reduction and absolute discharge volume) and responses of macroinvertebrate composition and periphyton condition were established for each season. 3. Declines in richness of Ephemeroptera and abundance of hydropsychid caddisflies, as well as increases in the proportion of predators, were linearly related to percentage discharge reduction during both seasons. Relationships were also recorded for eight other macroinvertebrate richness or compositional metrics during the dry season only. Relationships between macroinvertebrate assemblage attributes and absolute discharge volume across downstream reaches were also evident. Periphyton was relatively insensitive to flow reductions and did not provide useful hydro‐ecological relationships, although declines in autotrophic index were related to percentage discharge reduction during the dry season. 4. Using hydro‐ecological relationships established for macroinvertebrates, two levels of e‐flow were proposed: a ‘threshold’ intended to maintain near‐natural conditions and a ‘degradation limit’ that allowed no more than 25% of the maximum indicator response to flow reduction. Calculated threshold e‐flows required downstream allocation of ≥74% of natural flows; degradation limit e‐flows were ≥12% (wet) and ≥27% (dry). The discharge needed to maintain threshold conditions was 30–105 L s?1 (wet) and 5–14 L s?1 (dry), with degradation limit e‐flows of 19–57 L s?1 (wet) and 3–6 L s?1 (dry), relative to natural mean discharges of 77–303 L s?1 (wet) and 3–18 L s?1 (dry). 5. The proposed e‐flow allocations are indicative only, and significant obstacles to implementation have yet to be surmounted. Any such implementation requires monitoring of outcomes in order to refine the allocations and inform adaptive flow management for Hong Kong streams.  相似文献   

11.
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post‐illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1‐ to 5‐day‐old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis–Menten constant (Km) values obtained were 265 nmol m?2 (20 μm ) for DMADP‐consuming prenyltransferase reactions and 2560 nmol m?2 (190 μm ) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.  相似文献   

12.
Conversion of tropical rainforests to pastures and plantations is associated with changes in soil properties and biogeochemical cycling, with implications for carbon cycling and trace gas fluxes. The stable isotopic composition of ecosystem respiration (δ13CR and δ18OR) is used in inversion models to quantify regional patterns of CO2 sources and sinks, but models are limited by sparse measurements in tropical regions. We measured soil respiration rates, concentrations of CO2, CH4, CO, N2O and H2 and the isotopic composition of CO2, CH4 and H2 at four heights in the nocturnal boundary layer (NBL) above three common land‐use types in central Panama, during dry and rainy seasons. Soil respiration rates were lowest in Plantation (average 3.4 μmol m?2 s?1), highest in Pasture (8.3 μmol m?2 s?1) and intermediate in Rainforest (5.2 μmol m?2 s?1). δ13CR closely reflected land use and increased during the dry season where C3 vegetation was present. δ18OR did not differ by land use but was lower during the rainy than the dry season. CO2 was correlated with other species in approximately half of the NBL profiles, allowing us to estimate trace gas fluxes that were generally within the range of literature values. The Rainforest soil was a sink for CH4 but emissions were observed in Pasture and Plantation, especially during the wet season. N2O emissions were higher in Pasture and Plantation than Rainforest, contrary to expectations. Soil H2 uptake was highest in Rainforest and was not observable in Pasture and Plantation during the wet season. We observed soil CO uptake during the dry season and emissions during the wet season across land‐use types. This study demonstrated that strong impacts of land‐use change on soil–atmosphere trace gas exchange can be detected in the NBL, and provides useful observational constraints for top‐down and bottom‐up biogeochemistry models.  相似文献   

13.
Leaves of fast‐growing, woody bioenergy crops often emit volatile organic compounds (VOC). Some reactive VOC (especially isoprene) play a key role in climate forcing and may negatively affect local air quality. We monitored the seasonal exchange of VOC using the eddy covariance technique in a ‘coppiced’ poplar plantation. The complex interactions of VOC fluxes with climatic and physiological variables were also explored by using an artificial neural network (Self Organizing Map). Isoprene and methanol were the most abundant VOC emitted by the plantation. Rapid development of the canopy (and thus of the leaf area index, LAI) was associated with high methanol emissions and high rates of gross primary production (GPP) since the beginning of the growing season, while the onset of isoprene emission was delayed. The highest emissions of isoprene, and of isoprene photo‐oxidation products (Methyl Vinyl Ketone and Methacrolein, iox), occurred on the hottest and sunniest days, when GPP and evapotranspiration were highest, and formaldehyde was significantly deposited. Canopy senescence enhanced the exchange of oxygenated VOC. The accuracy of methanol and isoprene emission simulations with the Model of Emissions of Gases and Aerosols from Nature increased by applying a function to modify their basal emission factors, accounting for seasonality of GPP or LAI.  相似文献   

14.
We studied the seasonal variation in carbon dioxide, water vapour and energy fluxes in a broad‐leafed semi‐arid savanna in Southern Africa using the eddy covariance technique. The open woodland studied consisted of an overstorey dominated by Colophospermum mopane with a sparse understorey of grasses and herbs. Measurements presented here cover a 19‐month period from the end of the rainy season in March 1999 to the end of the dry season September 2000. During the wet season, sensible and latent heat fluxes showed a linear dependence on incoming solar radiation (I) with a Bowen ratio (β) typically just below unity. Although β was typically around 1 at low incoming solar radiation (150 W m?2) during the dry season, it increased dramatically with I, typically being as high as 4 or 5 around solar noon. Thus, under these water‐limited conditions, almost all available energy was dissipated as sensible, rather than latent heat. Marked spikes of CO2 release occurred at the onset of the rainfall season after isolated rainfall events and respiration dominated the balance well into the rainfall season. During this time, the ecosystem was a constant source of CO2 with an average flux of 3–5 μmol m?2 s?1 to the atmosphere during both day and night. But later in the wet season, for example, in March 2000 under optimal soil moisture conditions, with maximum leaf canopy development (leaf area index 0.9–1.3), the peak ecosystem CO2 influx was as much as 10 μmol m?2 s?1. The net ecosystem maximum photosynthesis at this time was estimated at 14 μmol m?2 s?1, with the woodland ecosystem a significant sink for CO2. During the dry season, just before leaf fall in August, maximum day‐ and night‐time net ecosystem fluxes were typically ?3 μmol m?2 s?1 and 1–2 μmol m?2 s?1, respectively, with the ecosystem still being a marginal sink. Over the course of 12 months (March 1999–March 2000), the woodland was more or less carbon neutral, with a net uptake estimated at only about 1 mol C m?2 yr?1. The annual net photosynthesis (gross primary production) was estimated at 32.2 mol m?2 yr?1.  相似文献   

15.
We present the energy and mass balance of cerrado sensu stricto (a Brazilian form of savanna), in which a mixture of shrubs, trees and grasses forms a vegetation with a leaf area index of 1·0 in the wet season and 0·4 in the dry season. In the wet season the available energy was equally dissipated between sensible heat and evaporation, but in the dry season at high irradiance the sensible heat greatly exceeded evaporation. Ecosystem surface conductance gs in the wet season rose abruptly to 0·3 mol m?2 s?1 and fell gradually as the day progressed. Much of the total variation in gs was associated with variation in the leaf-to-air vapour pressure deficit of water and the solar irradiance. In the dry season the maximal gs values were only 0·1 mol m?2 s?1. Maximal net ecosystem fluxes of CO2 in the wet and dry season were –10 and –15 μmol CO2 m?2 s?1, respectively (sign convention: negative denotes fluxes from atmosphere to vegetation). The canopy was well coupled to the atmosphere, and there was rarely a significant build-up of respiratory CO2 during the night. For observations in the wet season, the vegetation was a carbon dioxide sink, of maximal strength 0·15 mol m?2 d?1. However, it was a source of carbon dioxide for a brief period at the height of the dry season. Leaf carbon isotopic composition showed all the grasses except for one species to be C4, and all the palms and woody plants to be C3. The CO2 coming from the soil had an isotopic composition that suggested 40% of it was of C4 origin.  相似文献   

16.
Abstract Climatic conditions should not hinder nutrient release from decomposing leaf‐litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry‐season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaf‐fall and in decomposing leaf‐litter. In the experiment, soil in two 2.25‐ha plots of old‐growth lowland moist forest on Barro Colorado Island, Republic of Panama, was watered to maintain soil water potential at or above field capacity throughout the 4‐month dry season. Wet‐season leaf‐fall had greater concentrations of nitrogen (N, 13.5 mg g?1) and calcium (Ca, 15.6 mg g?1) and lower concentrations of sulfur (S, 2.51 mg g?1) and potassium (K, 3.03 mg g?1) than dry‐season leaf‐fall (N = 11.6 mg g?1, Ca = 13.6 mg g?1, S = 2.98 mg g?1, K = 5.70 mg g?1). Irrigation did not affect nutrient concentrations or nutrient return from forest trees to the forest floor annually (N = 18 g m?2, phosphorus (P) = 1.06 g m?2, S = 3.5 g m?2, Ca = 18.9 g m?2, magnesium = 6.5 g m?2, K = 5.7 g m?2). Nutrient mineralization rates were much greater during the wet season than the dry season, except for K, which did not vary seasonally. Nutrient residence times in forest‐floor material were longer in control plots than in irrigated plots, with values approximately equal to that for organic matter (210 in control plots vs 160 in irrigated plots). Calcium had the longest residence time. Forest‐floor material collected at the transition between seasons and incubated with or without leaching in the laboratory did not display large pulses in nutrient availability. Rather, microorganisms immobilized nutrients primarily during the wet season, unlike observations in tropical forests with longer dry seasons. Large amounts of P moved among different pools in forest‐floor material, apparently mediated by microorganisms. Arylsulfatase and phosphatase enzymes, which mineralize organically bound nutrients, had high activity throughout the dry season. Low soil moisture levels do not hinder nutrient cycling in this moist lowland forest.  相似文献   

17.

Seasonal variations in precipitation changed the community composition and microbial activity in a hypersaline, tropical microbial mat, in Cabo Rojo, PR. Using a combination of dissection, light, and transmission electron microscopy, terminal restriction fragment length polymorphism (T-RFLP), in situ microelectrode studies, and 35 S isotope incubations, we documented the major differences between wet and dry seasons. During the wet season (precipitation 177 mm), cyanobacterial (green layer) and anoxyphototrophic (pink layer) communities, as well as the black FeS layer were well-developed, and T-RFLP patterns indicated a diverse community. The rate of oxygenic photosynthesis was 49 μ M min ? 1 . Aerobic respiration was 29 μ M min ? 1 , and sulfate reduction was 264 nmol cm ? 3 h ? 1 . During the dry season (precipitation 51 mm), cyanobacteria and anoxyphototrophs were less diverse and abundant, and T-RFLP patterns were less complex. The O 2 production rate was reduced to 9 μ M min ? 1 , as was O 2 consumption (7 μ M min ? 1 ) and sulfate reduction (26 nmol cm ? 3 h ? 1 ). Aragonite, calcite, halite, and quartz were the predominant minerals. Seasonal differences were found in the green and pink layers for both halite and quartz. Gypsum was not observed, likely due to a sample handling artifact. The fluctuations in community composition and metabolic activity, principally reflected in fluctuations in binding and trapping potential of the uppermost mat community, might be responsible for the observed differences in mineralogy.  相似文献   

18.
To investigate the consequences of land use on carbon and energy exchanges between the ecosystem and atmosphere, we measured CO2 and water vapour fluxes over an introduced Brachiara brizantha pasture located in the Cerrado region of Central Brazil. Measurements using eddy covariance technique were carried out in field campaigns during the wet and dry seasons. Midday CO2 net ecosystem exchange rates during the wet season were ?40 μmol m?2 s?1, which is more than twice the rate found in the dry season (?15 μmol m?2 s?1). This was observed despite similar magnitudes of irradiance, air and soil temperatures. During the wet season, inferred rates of canopy photosynthesis did not show any tendency to saturate at high solar radiation levels, with rates of around 50 μmol m?2 s?1 being observed at the maximum incoming photon flux densities of 2200 μmol m?2 s?1. This contrasted strongly to the dry period when light saturation occurred with 1500 μmol m?2 s?1 and with maximum canopy photosynthetic rates of only 20 μmol m?2 s?1. Both canopy photosynthetic rates and night‐time ecosystem CO2 efflux rates were much greater than has been observed for cerrado native vegetation in both the wet and dry seasons. Indeed, observed CO2 exchange rates were also much greater than has previously been reported for C4 pastures in the tropics. The high rates in the wet season may have been attributable, at least in part, to the pasture not being grazed. Higher than expected net rates of carbon acquisition during the dry season may also have been attributable to some early rain events. Nevertheless, the present study demonstrates that well‐managed, productive tropical pastures can attain ecosystem gas exchange rates equivalent to fertilized C4 crops growing in the temperate zone.  相似文献   

19.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   

20.
We present a physiological model of isoprene (2-methyl-1,3-butadiene) emission which considers the cost for isoprene synthesis, and the production of reductive equivalents in reactions of photosynthetic electron transport for Liquidambar styraciflua L. and for North American and European deciduous temperate Quercus species. In the model, we differentiate between leaf morphology (leaf dry mass per area, MA, g m ? 2) altering the content of enzymes of isoprene synthesis pathway per unit leaf area, and biochemical potentials of average leaf cells determining their capacity for isoprene emission. Isoprene emission rate per unit leaf area ( μ mol m ? 2 s ? 1) is calculated as the product of MA, the fraction of total electron flow used for isoprene synthesis ( ? , mol mol ? 1), the rate of photosynthetic electron transport (J) per unit leaf dry mass (Jm, μ mol g ? 1 s ? 1), and the reciprocal of the electron cost of isoprene synthesis [mol isoprene (mol electrons ? 1)]. The initial estimate of electron cost of isoprene synthesis is calculated according to the 1-deoxy- D -xylulose-5-phosphate pathway recently discovered in the chloroplasts, and is further modified to account for extra electron requirements because of photorespiration. The rate of photosynthetic electron transport is calculated by a process-based leaf photosynthesis model. A satisfactory fit to the light-dependence of isoprene emission is obtained using the light response curve of J, and a single value of ? , that is dependent on the isoprene synthase activity in the leaves. Temperature dependence of isoprene emission is obtained by combining the temperature response curves of photosynthetic electron transport, the shape of which is related to long-term temperature during leaf growth and development, and the specific activity of isoprene synthase, which is considered as essentially constant for all plants. The results of simulations demonstrate that the variety of temperature responses of isoprene emission observed within and among the species in previous studies may be explained by different optimum temperatures of J and/or limited maximum fraction of electrons used for isoprene synthesis. The model provides good fits to diurnal courses of field measurements of isoprene emission, and is also able to describe the changes in isoprene emission under stress conditions, for example, the decline in isoprene emission in water-stressed leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号