首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
MicroRNAs (miRNAs) are small RNA molecules (~ 20–30 nucleotides) that generally act in gene silencing and translational repression through the RNA interference pathway. They generally originate from intergenic genomic regions, but some are found in genomic regions that have been characterized such as introns, exons, and transposable elements (TE). To identify the miRNAs that are derived from palindromic MERs, we analyzed MER paralogs in human genome. The structures of the palindromic MERs were similar to the hairpin structure of miRNA in humans. Three miRNAs derived from MER96 located on chromosome 3, and MER91C paralogs located on chromosome 8 and chromosome 17 were identified in HeLa, HCT116, and HEK293 cell lines. The interactions between these MER-derived miRNAs and AGO1, AGO2, and AGO3 proteins were validated by immunoprecipitation assays. The data suggest that miRNAs derived from transposable elements could widely affect various target genes in the human genome.  相似文献   

5.
6.
7.
RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double‐stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein–protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA‐induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre‐programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high‐molecular‐weight complex, suggesting the existence of a multi‐protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA–RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co‐expressed AGO1 in both the presence and absence of P0.  相似文献   

8.
The de novo silencing of transposable elements in plants and animals is mediated in part by RNA‐directed chromatin modification. In flowering plants, AGO4 has been seen as the key argonaute protein in the RNA‐directed DNA methylation pathway that links the plant‐specific RNA polymerase V with the de novo DNA methyltransferase DRM2 (Zhong et al, 2014). Two recent papers in The EMBO Journal strongly implicate a role for the AGO6 protein in the process of de novo silencing.  相似文献   

9.
10.
11.
12.
13.
14.
Previous evidence has indicated that the P25 protein encoded by Potato virus X (PVX) inhibits either the assembly or function of the effector complexes in the RNA silencing‐based antiviral defence system (Bayne et al., Cell‐to‐cell movement of Potato Potexvirus X is dependent on suppression of RNA silencing. Plant J. 44 , 471–482). This finding prompted us to investigate the possibility that P25 targets the Argonaute (AGO) effector nuclease of RNA silencing. Co‐immunoprecipitation and Western blot analysis indicated that there is a strong interaction between P25 and AGO1 of Arabidopsis when these proteins are transiently co‐expressed in Nicotiana benthamiana. P25 also interacts with AGO1, AGO2, AGO3 and AGO4, but not with AGO5 and AGO9. As an effective suppressor, the amount of AGO1 accumulated in the presence of P25 was dramatically lower than that infiltrated with HcPro, but was restored when treated with a proteasome inhibitor MG132. These findings are consistent with the idea that RNA silencing is an antiviral defence mechanism and that the counter‐defence role of P25 is through the degradation of AGO proteins via the proteasome pathway. Further support for this idea is provided by the observation that plants treated with MG132 are less susceptible to PVX and its relative Bamboo mosaic virus.  相似文献   

15.
16.
17.
18.
Huntington’s disease is an incurable neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat within one allele of the huntingtin (HTT) gene. Agents that block expression of mutant HTT and preserve expression of wild-type HTT target the cause of the disease and are an alternative for therapy. We have previously demonstrated that mismatch-containing duplex RNAs complementary to the expanded trinucleotide repeat are potent and allele-selective inhibitors of mutant HTT expression, but the mechanism of allele selectivity was not explored. We now report that anti-CAG duplex RNA preferentially recruits argonaute 2 (AGO2) to mutant rather than wild-type HTT mRNA. Efficient inhibition of mutant HTT protein expression requires less AGO2 than needed for inhibiting wild-type expression. In contrast, inhibiting the expression of mutant HTT protein is highly sensitive to reduced expression of GW182 (TNRC6A) and its two paralogs, a protein family associated with miRNA action. Allele-selective inhibition may involve cooperative binding of multiple protein–RNA complexes to the expanded repeat. These data suggest that allele-selective inhibition proceeds through an RNA interference pathway similar to that used by miRNAs and that discrimination between mutant and wild-type alleles of HTT mRNA is highly sensitive to the pool of AGO2 and GW182 family proteins inside cells.  相似文献   

19.
Argonaute (AGO) family proteins are conserved key components of small RNA‐induced silencing pathways. In the RNA‐directed DNA methylation (RdDM) pathway in Arabidopsis, AGO6 is generally considered to be redundant with AGO4. In this report, our comprehensive, genomewide analyses of AGO4‐ and AGO6‐dependent DNA methylation revealed that redundancy is unexpectedly negligible in the genetic interactions between AGO4 and AGO6. Immunofluorescence revealed that AGO4 and AGO6 differ in their subnuclear co‐localization with RNA polymerases required for RdDM. Pol II and AGO6 are absent from perinucleolar foci, where Pol V and AGO4 are co‐localized. In the nucleoplasm, AGO4 displays a strong co‐localization with Pol II, whereas AGO6 co‐localizes with Pol V. These patterns suggest that RdDM is mediated by distinct, spatially regulated combinations of AGO proteins and RNA polymerases. Consistently, Pol II physically interacts with AGO4 but not AGO6, and the levels of Pol V‐dependent scaffold RNAs and Pol V chromatin occupancy are strongly correlated with AGO6 but not AGO4. Our results suggest that AGO4 and AGO6 mainly act sequentially in mediating small RNA‐directed DNA methylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号