首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although it is known that in most angiosperms mitosis in early endosperm development is syncytial and synchronized,it is unclear how the synchronization is regulated.We showed previously that APC11,also named ZYG1,in Arabidopsis activates zygote division by interaction and degradation of cyclin B1.Here,we report that the mutation in APC11/ZYG1 led to unsynchronized mitosis and over-accumulation of cyclin B1-GUS in the endosperm.Mutations in two other APC subunits showed similar defects.Transgenic expression of stable cyclin B1 in the endosperm also caused unsynchronized mitosis.Further,downregulation of APC11 generated multi-nucleate somatic cells with unsynchronized mitotic division.Together,our results suggest that APC/C-mediated cyclin B1 degradation is critical for cell cycle synchronization.  相似文献   

2.
The anaphase‐promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that is involved in regulating cell‐cycle progression. It has been widely studied in yeast and animal cells, but the function and regulation of the APC/C in plant cells are largely unknown. The Arabidopsis APC/C comprises at least 11 subunits, only a few of which have been studied in detail. APC4 is proposed to be a connector in the APC/C in yeast and animals. Here, we report the functional characterization of the Arabidopsis APC4 protein. We examined three heterozygous plant lines carrying apc4 alleles. These plants showed pleiotropic developmental defects in reproductive processes, including abnormal nuclear behavior in the developing embryo sac and aberrant cell division in embryos; these phenotypes differ from those reported for mutants of other subunits. Some ovules and embryos of apc4/+ plants also accumulated cyclin B protein, a known substrate of APC/C, suggesting a compromised function of APC/C. Arabidopsis APC4 was expressed in meristematic cells of seedlings, ovules in pistils and embryos in siliques, and was mainly localized in the nucleus. Additionally, the distribution of auxin was distorted in some embryos of apc4/+ plants. Our results indicate that Arabidopsis APC4 plays critical roles in female gametogenesis and embryogenesis, possibly as a connector in APC/C, and that regulation of auxin distribution may be involved in these processes.  相似文献   

3.
In sexual organisms, division of the zygote initiates a new life cycle. Although several genes involved in zygote division are known in plants, how the zygote is activated to start embryogenesis has remained elusive.Here, we showed that a mutation in ZYGOTE-ARREST 3(ZYG3) in Arabidopsis led to a tight zygote-lethal phenotype.Map-based cloning revealed that ZYG3 encodes the transfer RNA(tRNA) ligase AtRNL, which is a single-copy gene in the Arabidopsis genome. Expression analyses showed that AtRNL is expressed throughout zygotic embryogenesis, and in meristematic tissues. Using pAtRNL::cAtRNL-sYFP-complemented zyg3/zyg3 plants, we showed that AtRNL is localized exclusively in the cytoplasm, suggesting that tRNA splicing occurs primarily in the cytoplasm. Analyses using partially rescued embryos showed that mutation in AtRNL compromised splicing of intron-containing tRNA.Mutations of two tRNA endonuclease genes, SEN1 and SEN2, also led to a zygote-lethal phenotype. These results together suggest that tRNA splicing is critical for initiating zygote division in Arabidopsis.  相似文献   

4.
5.
The ICK/KRP family of cyclin‐dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope‐tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA‐ICK1 protein was observed when both the N‐terminal 1–40 sequence was removed and the SCF (SKP1–Cullin1–F‐box complex) function disrupted, suggesting the involvement of both SCF‐dependent and SCF‐independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21–30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N‐terminus or C‐terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP‐ICK11–40 in yeast. These results thus identify a protein‐destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF‐independent mechanism.  相似文献   

6.
Objective: Chromosome segregation during mitosis requires a physically large proteinaceous structure called the kinetochore to generate attachments between chromosomal DNA and spindle microtubules. It is essential for kinetochore components to be carefully regulated to guarantee successful cell division. Depletion, mutation or dysregulation of kinetochore proteins results in mitotic arrest and/or cell death. HEC1 (high expression in cancer) has been reported to be a kinetochore protein, depletion of which, by RNA interference, results in catastrophic mitotic exit. Materials and methods and results: To investigate how HEC1 protein is controlled post‐translation, we analysed the role of anaphase‐promoting complex/cyclosome (APC/C)‐Cdh1 in degradation of HEC1 protein. In this study, we show that HEC1 is an unstable protein and can be targeted by endogenous ubiquitin‐proteasome system in HEK293T cells. Results of RNA interference and in vivo ubiquitination assay indicated that HEC1 could be ubiquitinated and degraded by APC/C‐hCdh1 E3 ligase. The evolutionally conserved D‐box at the C‐terminus functioned as the degron of HEC1, destruction of which resulted in resistance to degradation mediated by APC/C‐Cdh1. Overexpression of non‐degradable HEC1 (D‐box destroyed) induced accumulation of cyclin B protein in vivo and triggered mitotic arrest. Conclusion: APC/C‐Cdh1 controls stability of HEC1, ensuring normal cell cycle progression.  相似文献   

7.
Pumilio RNA‐binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre‐rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T‐DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro‐embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA–protein interaction assay showed that the histidine‐tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.  相似文献   

8.
Coordination of endomembrane biogenesis with cell cycle progression is considered to be important in maintaining cell function during growth and development. We previously showed that the disruption of PHOSPHATIDIC ACID PHOSPHOHYDROLASE (PAH) activity in Arabidopsis thaliana stimulates biosynthesis of the major phospholipid phosphatidylcholine (PC) and causes expansion of the endoplasmic reticulum. Here we show that PC biosynthesis is repressed by disruption of the core cell cycle regulator CYCLIN‐DEPENDENT KINASE A;1 (CDKA;1) and that this repression is reliant on PAH. Furthermore, we show that cyclin‐dependent kinases (CDKs) phosphorylate PAH1 at serine 162, which reduces both its activity and membrane association. Expression of a CDK‐insensitive version of PAH1 with a serine 162 to alanine substitution represses PC biosynthesis and also reduces the rate of cell division in early leaf development. Together our findings reveal a physiologically important mechanism that couples the rate of phospholipid biosynthesis and endomembrane biogenesis to cell cycle progression in Arabidopsis.  相似文献   

9.
10.
Phytosterols are classified into C24‐ethylsterols and C24‐methylsterols according to the different C24‐alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24‐ethylsterols while the C24‐methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin‐dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2–GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2–GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24‐ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24‐ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24‐ethylsterols were critical events to achieve polarized growth in the plant lineage.  相似文献   

11.
The large retromer complex participates in diverse endosomal trafficking pathways and is essential for plant developmental programs, including cell polarity, programmed cell death and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A and VPS29 necessary for root hair growth in Arabidopsis. Bimolecular fluorescence complementation showed that VPS26C forms a complex with VPS35A in the presence of VPS29, and this is supported by genetic studies showing that vps29 and vps35a mutants exhibit altered root hair growth. Genetic analysis also demonstrated an interaction between a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis indicates that VPS26C, with the notable exception of grasses, has been maintained in the genomes of most major plant clades since its evolution at the base of eukaryotes. To test the model that VPS26C orthologs in animal and plant species share a conserved function, we generated transgenic lines expressing GFP fused with the VPS26C human ortholog (HsDSCR3) in a vps26c background. These studies illustrate that GFP‐HsDSCR3 is able to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep conservation of cellular function for this large retromer subunit across plant and animal kingdoms.  相似文献   

12.
RAB GTPases are key regulators of membrane traffic. Among them, RAB11, a widely conserved sub‐group, has evolved in a unique way in plants; plant RAB11 members show notable diversity, whereas yeast and animals have only a few RAB11 members. Fifty‐seven RAB GTPases are encoded in the Arabidopsis thaliana genome, 26 of which are classified in the RAB11 group (further divided into RABA1–RABA6 sub‐groups). Although several plant RAB11 members have been shown to play pivotal roles in plant‐unique developmental processes, including cytokinesis and tip growth, molecular and physiological functions of the majority of RAB11 members remain unknown. To reveal precise functions of plant RAB11, we investigated the subcellular localization and dynamics of the largest sub‐group of Arabidopsis RAB11, RABA1, which has nine members. RABA1 members reside on mobile punctate structures adjacent to the trans‐Golgi network and co‐localized with VAMP721/722, R‐SNARE proteins that operate in the secretory pathway. In addition, the constitutive‐active mutant of RABA1b, RABA1bQ72L , was present on the plasma membrane. The RABA1b ‐containing membrane structures showed actin‐dependent dynamic motion . Vesicles labeled by GFP–RABA1b moved dynamically, forming queues along actin filaments. Interestingly, Arabidopsis plants whose four major RABA1 members were knocked out, and those expressing the dominant‐negative mutant of RABA1B, exhibited hypersensitivity to salinity stress. Altogether, these results indicate that RABA1 members mediate transport between the trans‐Golgi network and the plasma membrane, and are required for salinity stress tolerance.  相似文献   

13.
Kinetochore, a protein super‐complex on the centromere of chromosomes, mediates chromosome segregation during cell division by providing attachment sites for spindle microtubules. The NDC80 complex, composed of four proteins, NDC80, NUF2, SPC24 and SPC25, is localized at the outer kinetochore and connects spindle fibers to the kinetochore. Although it is conserved across species, functional studies of this complex are rare in Arabidopsis. Here, we characterize a recessive mutant, meristem unstructured‐1 (mun‐1), exhibiting an abnormal phenotype with unstructured shoot apical meristem caused by ectopic expression of the WUSCHEL gene in unexpected tissues. mun‐1 is a weak allele because of the insertion of T‐DNA in the promoter region of the SPC24 homolog. The mutant exhibits stunted growth, embryo arrest, DNA aneuploidy, and defects in chromosome segregation with a low cell division rate. Null mutants of MUN from TALEN and CRISPR/Cas9‐mediated mutagenesis showed zygotic embryonic lethality similar to nuf2‐1; however, the null mutations were fully transmissible via pollen and ovules. Interactions among the components of the NDC80 complex were confirmed in a yeast two‐hybrid assay and in planta co‐immunoprecipitation. MUN is co‐localized at the centromere with HTR12/CENH3, which is a centromere‐specific histone variant, but MUN is not required to recruit HTR12/CENH3 to the kinetochore. Our results support that MUN is a functional homolog of SPC24 in Arabidopsis, which is required for proper cell division. In addition, we report the ectopic generations of stem cell niches by the malfunction of kinetochore components.  相似文献   

14.
Auxin plays a pivotal role in many facets of plant development. It acts by inducing the interaction between auxin‐responsive [auxin (AUX)/indole‐3‐acetic acid (IAA)] proteins and the ubiquitin protein ligase SCFTIR to promote the degradation of the AUX/IAA proteins. Other cofactors and chaperones that participate in auxin signaling remain to be identified. Here, we characterized rice (Oryza sativa) plants with mutations in a cyclophilin gene (OsCYP2). cyp2 mutants showed defects in auxin responses and exhibited a variety of auxin‐related growth defects in the root. In cyp2 mutants, lateral root initiation was blocked after nuclear migration but before the first anticlinal division of the pericycle cell. Yeast two‐hybrid and in vitro pull‐down results revealed an association between OsCYP2 and the co‐chaperone Suppressor of G2 allele of skp1 (OsSGT1). Luciferase complementation imaging assays further supported this interaction. Similar to previous findings in an Arabidopsis thaliana SGT1 mutant (atsgt1b), degradation of AUX/IAA proteins was retarded in cyp2 mutants treated with exogenous 1‐naphthylacetic acid. Our results suggest that OsCYP2 participates in auxin signal transduction by interacting with OsSGT1.  相似文献   

15.
The present study was designed to investigate whether destabilization of maturation promoting factor (MPF) leads to postovulatory aging‐mediated abortive spontaneous egg activation (SEA). If so, we wished to determine whether changes in Wee‐1 as well as Emi2 levels are associated with MPF destabilization during postovulatory aging‐mediated abortive SEA in rats eggs aged in vivo. For this purpose, sexually immature female rats were given a single injection (20 IU IM) of pregnant mare serum gonadotropin for 48 h followed by single injection of human chorionic gonadotropin (20 IU). Ovulated eggs were collected after 14, 17, 19 and 21 h post‐hCG surge to induce postovulatory aging in vivo. The morphological changes, Wee1, phosphorylation status of cyclin dependent kinase 1(Cdk1), early mitotic inhibitor 2 (Emi2), anaphase promoting complex/cyclosome (APC/C), cyclin B1, mitotic arrest deficient protein (MAD2) levels and Cdk1 activity were analyzed. The increased Wee 1 level triggered phosphorylation of Thr‐14/Tyr‐15 and dephosphorylation of Thr‐161 residues of Cdk1. The decrease of Emi2 level was associated with increased APC/C level and decreased cyclin B1 level. Changes in phosphorylation status of Cdk1 and reduced cyclin B1 level resulted in destabilization of MPF. The destabilized MPF finally led to postovulatory aging‐mediated abortive SEA in rat eggs. It was concluded that the increase of Wee 1 but decrease of Emi2 level triggers MPF destabilization and thereby postovulatory aging‐mediated abortive SEA in rat eggs.  相似文献   

16.
For the full activation of cyclin‐dependent kinases (CDKs), not only cyclin binding but also CDK phosphorylation is required. This activating phosphorylation is mediated by CDK‐activating kinases (CAKs). Arabidopsis has four genes showing similarity to vertebrate‐type CAKs, three CDKDs (CDKD;1CDKD;3) and one CDKF (CDKF;1). We previously found that the cdkf;1 mutant is defective in post‐embryonic development, even though the kinase activities of core CDKs remain unchanged relative to the wild type. This raised a question about the involvement of CDKDs in CDK activation in planta. Here we report that the cdkd;1 cdkd;3 double mutant showed gametophytic lethality. Most cdkd;1‐1 cdkd;3‐1 pollen grains were defective in pollen mitosis I and II, producing one‐cell or two‐cell pollen grains that lacked fertilization ability. We also found that the double knock‐out of CDKD;1 and CDKD;3 caused arrest and/or delay in the progression of female gametogenesis at multiple steps. Our genetic analyses revealed that the functions of CDKF;1 and CDKD;1 or CDKD;3 do not overlap, either during gametophyte and embryo development or in post‐embryonic development. Consistent with these analyses, CDKF;1 expression in the cdkd;1‐1 cdkd;3‐1 mutant could not rescue the gametophytic lethality. These results suggest that, in Arabidopsis, CDKD;1 and CDKD;3 function as CAKs controlling mitosis, whereas CDKF;1 plays a distinct role, mainly in post‐embryonic development. We propose that CDKD;1 and CDKD;3 phosphorylate and activate all core CDKs, CDKA, CDKB1 and CDKB2, thereby governing cell cycle progression throughout plant development.  相似文献   

17.
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild‐type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss‐of‐function mutations, or in a dominant (gain‐of‐function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.  相似文献   

18.
The Arabidopsis arc1 (accumulation and replication of chloroplasts 1) mutant has pale seedlings and smaller, more numerous chloroplasts than the wild type. Previous work has suggested that arc1 affects the timing of chloroplast division but does not function directly in the division process. We isolated ARC1 by map‐based cloning and discovered it encodes FtsHi1 (At4g23940), one of several FtsHi proteins in Arabidopsis. These poorly studied proteins resemble FtsH metalloproteases important for organelle biogenesis and protein quality control but are presumed to be proteolytically inactive. FtsHi1 bears a predicted chloroplast transit peptide and localizes to the chloroplast envelope membrane. Phenotypic studies showed that arc1 (hereafter ftsHi1‐1), which bears a missense mutation, is a weak allele of FtsHi1 that disrupts thylakoid development and reduces de‐etiolation efficiency in seedlings, suggesting that FtsHi1 is important for chloroplast biogenesis. Consistent with this finding, transgenic plants suppressed for accumulation of an FtsHi1 fusion protein were often variegated. A strong T‐DNA insertion allele, ftsHi1‐2, caused embryo‐lethality, indicating that FtsHi1 is an essential gene product. A wild‐type FtsHi1 transgene rescued both the chloroplast division and pale phenotypes of ftsHi1‐1 and the embryo‐lethal phenotype of ftsHi1‐2. FtsHi1 overexpression produced a subtle increase in chloroplast size and decrease in chloroplast number in wild‐type plants while suppression led to increased numbers of small chloroplasts, providing new evidence that FtsHi1 negatively influences chloroplast division. Taken together, our analyses reveal that FtsHi1 functions in an essential, envelope‐associated process that may couple plastid development with division.  相似文献   

19.
Nitric oxides (NO) act as one of the major signal molecules and modulate various cell functions including oocyte meiosis in mammals. The present study was designed to investigate the mechanism of NO action during spontaneous meiotic exit from diplotene arrest (EDA) in rat cumulus oocytes complexes (COCs) cultured in vitro. Diplotene‐arrested COCs collected from ovary of immature female rats after 20 IU pregnant mare's serum gonadotropins (PMSG) for 48 h were exposed to various concentrations of NO donor, S‐nitroso‐N‐acetyl penicillamine (SNAP) and inducible nitric oxide synthase (iNOS) inhibitor, aminoguanidine (AG) for 3 h in vitro and downstream factors were analyzed. Our results suggest that SNAP inhibited, while AG induced EDA in a concentration‐dependent manner. The iNOS‐mediated total NO, cyclic nucleotides and cell division cycle 25B (Cdc25B) levels were reduced significantly. The decreased Cdc25B was associated with the increased Thr14/Tyr15 phosphorylated cyclin‐dependent kinase 1 (Cdk1) level and decreased Thr161 phosphorylated Cdk1 as well as cyclin B1 levels leading to maturation promoting factor (MPF) destabilization. The destabilized MPF finally induced spontaneous EDA. Taken together, these results suggest that reduction of iNOS‐mediated NO level destabilizes MPF during spontaneous EDA in rat COCs cultured in vitro.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号