首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Okinawa, the only subtropical area in Japan with numerous island ecosystems, is expected to have diverse microbial resources. Recently, we reported the construction of a culture filtrate library with microbes originally isolated from soils in Okinawa, including the Yaeyama Archipelago, and validated its phylogenetic diversity. In the present study, we investigated the inhibitory effect of the cell extract (CE) from microbial isolate 3–45 against Magnaporthe oryzae in rice (Oryza sativa). Abnormal appressorium formation by M. oryzae was induced in the presence of the CE from isolate 3–45. Additionally, melanization of appressoria was inhibited in the presence of CE from isolate 3–45. Sequence analysis of the 16S rDNA region of isolate 3–45 indicated that it shared similarities with Streptomyces erythrochromogenes. When rice leaves were inoculated with M. oryzae in the presence of CE from isolate 3–45, blast lesion formation was inhibited compared to leaves treated with M. oryzae in the absence of CE from isolate 3–45. In addition, M. oryzae infective activity was significantly inhibited in rice leaf sheaths treated with CE from isolate 3–45. Furthermore, abnormal appressorium formation was observed in the presence of heat‐treated CE from isolate 3–45. These results suggest that CE from isolate 3–45 can protect rice from blast disease caused by M. oryzae. Further studies are required to identify the active compounds present in 3–45‐CE and to clarify its mechanism of inhibition in full detail. The present study on isolate 3–45 might contribute to the development of a new fungicide for controlling rice blast disease caused by M. oryzae.  相似文献   

2.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

3.
Brown spot, caused by the fungus Bipolaris oryzae, is one of the most destructive diseases of rice. This study investigated the effect of zinc rates on the development of brown spot in rice. Rice plants (cv. ‘Metica‐1′) were grown in hydroponic culture amended with Zn rates (applied as ZnSO4.7H2O) of 0, 0.5, 1, 2 and 4 μm and inoculated with B. oryzae. The foliar concentration of Zn was determined. Leaf samples were assessed for disease severity, and then, area under brown spot progress curve (AUBSPC) was calculated. The relationship between Zn concentrations on leaf tissues and the rates of this micronutrient was best described by a positive linear regression model, while the relationship between the Zn rates and the AUBSPC was best described with a positive quadratic regression model. The correlation between Zn concentrations on leaf tissues and AUBSPC was positive and significant (r = 0.68, P < 0.05). The results from this study showed that high foliar concentration of Zn was associated with increasing rice susceptibility to brown spot.  相似文献   

4.
5.
Two photomorphogenic mutants of rice, coleoptile photomorphogenesis 2 (cpm2) and hebiba, were found to be defective in the gene encoding allene oxide cyclase (OsAOC) by map‐based cloning and complementation assays. Examination of the enzymatic activity of recombinant GST–OsAOC indicated that OsAOC is a functional enzyme that is involved in the biosynthesis of jasmonic acid and related compounds. The level of jasmonate was extremely low in both mutants, in agreement with the fact that rice has only one gene encoding allene oxide cyclase. Several flower‐related mutant phenotypes were observed, including morphological abnormalities of the flower and early flowering. We used these mutants to investigate the function of jasmonate in the defence response to the blast fungus Magnaporthe oryzae. Inoculation assays with fungal spores revealed that both mutants are more susceptible than wild‐type to an incompatible strain of M. oryzae, in such a way that hyphal growth was enhanced in mutant tissues. The level of jasmonate isoleucine, a bioactive form of jasmonate, increased in response to blast infection. Furthermore, blast‐induced accumulation of phytoalexins, especially that of the flavonoid sakuranetin, was found to be severely impaired in cpm2 and hebiba. Together, the present study demonstrates that, in rice, jasmonate mediates the defence response against blast fungus.  相似文献   

6.
7.
Of 70 micro‐organisms (fungi, bacteria and actinomycetes) isolated from soil using vegetable tissue baits, 16 produced substances in culture fluids capable of preventing the development of blast caused by Magnaporthe oryzae on rice leaves with little or no inhibitory effect on the conidial germination of the pathogen. Isolate KS‐F14, which secreted substances capable of activating resistance in untreated leaves, was selected and identified as Fusarium solani. The resistance‐inducing substances were effective at pH values ranging from 5 to 10 and were stable under high temperatures, maintaining approximately the same level of activity even after autoclaving for 20 min. After application, the activated resistance in rice leaves persisted for 14 days. The polar solvent extracts of freeze‐dried KS‐F14 secretions were effective in activating resistance against M. oryzae in rice plants. The non‐polar solvent extracts were also effective, albeit not as effective as the polar solvent extracts, indicating that although the majority of the secreted resistance‐inducing compounds are hydrophilic, some of the compounds are hydrophobic. Treating secretions with cation or anion exchange resins only partially reduced their resistance‐inducing ability, suggesting that the resistance‐inducing components include both charged and non‐charged compounds. The resistance‐inducing compounds produced by F. solani have the potential to be developed into a commercial product for the control of rice blast and possibly other plant diseases.  相似文献   

8.
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up‐regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)‐limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)‐limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)‐limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.  相似文献   

9.
Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot‐and‐mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound‐ and pathogen‐inducible mpi promoter. The mpi‐pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi‐pci rice, compared with larvae fed on wild‐type plants, was observed. Expression of the mpi‐pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi‐pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi‐pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi‐pci fusion gene for dual resistance against insects and pathogens in rice plants.  相似文献   

10.
Lesion mimic mutants that exhibit spontaneous hypersensitive response (HR)‐like necrotic lesions are ideal experimental systems for elucidating molecular mechanisms involved in plant cell death and defence responses. Here we report identification of a rice lesion mimic mutant, spotted leaf 35 (spl35), and cloning of the causal gene by TAIL‐PCR strategy. spl35 exhibited decreased chlorophyll content, higher accumulation of H2O2, up‐regulated expression of defence‐related marker genes, and enhanced resistance to both fungal and bacterial pathogens of rice. The SPL35 gene encodes a novel CUE (coupling of ubiquitin conjugation to ER degradation) domain‐containing protein that is predominantly localized in cytosol, ER and unknown punctate compartment(s). SPL35 is constitutively expressed in all organs, and both overexpression and knockdown of SPL35 cause the lesion mimic phenotype. SPL35 directly interacts with the E2 protein OsUBC5a and the coatomer subunit delta proteins Delta‐COP1 and Delta‐COP2 through the CUE domain, and down‐regulation of these interacting proteins also cause development of HR‐like lesions resembling those in spl35 and activation of defence responses, indicating that SPL35 may be involved in the ubiquitination and vesicular trafficking pathways. Our findings provide insight into a role of SPL35 in regulating cell death and defence response in plants.  相似文献   

11.
12.
Blast caused by Magnaporthe oryzae is the most devastating disease causing significant loss in rice production. The destructive nature of the disease is mainly due to the genetic plasticity of M. oryzae which complicates the breeding strategies. Blast can be effectively managed by the deployment of R genes. In this study, broad‐spectrum blast resistance genes Pi2 and Pi5 were introgressed independently into popular but blast susceptible rice variety, Samba Mahsuri (BPT5204) by applying marker‐assisted backcross breeding approach. Tightly linked markers AP5930 for Pi2 and 40N23r for Pi5 gene were used in foreground selection. Background selection helped to identify the lines with maximum recovery of recurrent parent genome (RPG). The RPG recovery in Pi2 introgression lines was up to 90.17 and 91.46% in Pi5 lines. Homozygous introgression lines in BC3F4 generation carrying Pi2 and Pi5 gene were field evaluated for blast resistance, yield per se and yield‐related traits. The lines showed resistance to leaf and neck blast in multilocation field evaluation. Improved BPT5204 lines with improvement for blast resistance were on par with original BPT5204 in terms of grain yield and grain features.  相似文献   

13.
14.
Evolutionarily conserved ecto‐nucleoside triphosphate diphosphohydrolases (referred to ‘NTPDases’ below) are important ecto‐nucleotidases that are able to hydrolyse NTPs and NDPs in the environment to the monophosphate form. NTPDases are found in a variety of eukaryotic organisms including medical pathogens. However, pathogenic roles of these NTPDases in medical and plant pathogens are still very obscure. Here, we demonstrate that conidial germination, appressorium formation and pathogenicity of rice blast fungus Magnaporthe oryzae that had been pretreated with NTPDase‐specific inhibitors were significantly reduced, suggesting that NTPDases of M. oryzae play an important role in its infection. Our findings may provide a new avenue for powerful fungicide development and the control of rice blast.  相似文献   

15.
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.  相似文献   

16.
The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain‐of‐function mutations in an ATP‐binding cassette transporter gene. An Lr34‐like fungal disease resistance with a similar broad‐spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34‐expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence‐based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad‐spectrum disease resistance against the most devastating fungal disease of rice.  相似文献   

17.
18.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

19.
DNA markers that allow for identification of resistance genes in rice germplasm have a great advantage in resistance breeding because they can assess the existence of the genes without laborious inoculation tests. Functional markers (FMs), which are designed from functional polymorphisms within the sequence of genes, are unaffected by nonfunctional allelic variation and make it possible to identify an individual gene. We previously showed that the resistance function of the rice blast resistance gene Pit in a resistant cultivar, K59, was mainly acquired by up-regulated promoter activity through the insertion of a long terminal repeat (LTR) retrotransposon upstream of Pit. Here, we developed PCR-based DNA markers derived from the LTR-retrotransposon sequence and used these markers to screen worldwide accessions of rice germplasm. We identified 5 cultivars with the LTR-retrotransposon insertion out of 68 rice accessions. The sequence and expression pattern of Pit in the five cultivars were the same as those in K59 and all showed Pit-mediated blast resistance. The results suggest that the functional Pit identified using the markers was derived from a common progenitor. Additionally, comparison of the Pit coding sequences between K59 and susceptible cultivars revealed that one nucleotide polymorphism, which caused an amino acid substitution, offered another target for a FM. These results indicate that our DNA markers should enhance prediction of Pit function and be applicable to a range of rice varieties/landraces cultivated in various regions worldwide and belonging to the temperate japonica, tropical japonica, and indica groups.  相似文献   

20.
Precise genome engineering via homologous recombination (HR)‐mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR‐mediated GT is an extremely rare event, positive–negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re‐integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)‐tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号