首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids and isoflavonoids are major plant secondary metabolites that mediate diverse biological functions and exert significant ecological impacts. These compounds play important roles in many essential physiological processes. In addition, flavonoids and isoflavonoids have direct but complex effects on human health, ranging from reducing cholesterol levels and preventing certain cancers to improving women's health. In this study, we cloned and functionally characterized five soybean (Glycine max) chalcone isomerases (CHIs), key enzymes in the phenylpropanoid pathway that produces flavonoids and isoflavonoids. Gene expression and kinetics analysis suggest that the soybean type I CHI, which uses naringenin chalcone as substrate, is coordinately regulated with other flavonoid-specific genes, while the type II CHIs, which use a variety of chalcone substrates, are coordinately regulated with an isoflavonoid-specific gene and specifically activated by nodulation signals. Furthermore, we found that some of the newly identified soybean CHIs do not require the 4′-hydroxy moiety on the substrate for high enzyme activity. We then engineered yeast (Saccharomyces cerevisiae) to produce flavonoid and isoflavonoid compounds. When one of the type II CHIs was coexpressed with an isoflavone synthase, the enzyme catalyzing the first committed step of isoflavonoid biosynthesis, various chalcone substrates added to the culture media were converted to an assortment of isoflavanones and isoflavones. We also reconstructed the flavonoid pathway by coexpressing CHI with either flavanone 3β-hydroxylase or flavone synthase II. The in vivo reconstruction of the flavonoid and isoflavonoid pathways in yeast provides a unique platform to study enzyme interactions and metabolic flux.  相似文献   

2.
Isoflavonoids are a large group of plant natural products and play important roles in plant defense. They also possess valuable health-promoting activities with significant health benefits for animals and humans. The isoflavonoids are identified primarily in leguminous plants and are synthesized through the central phenylpropanoid pathway and the specific isoflavonoid branch pathways in legumes. Structural studies of some key enzymes in the central phenylpropanoid pathway shed light on the early stages of the (iso)flavonoid biosynthetic process. Significant impact has also been made on structural studies of enzymes in the isoflavonoid branch pathways. Structures of isoflavonoid-specific NADPH-dependent reductases revealed how the (iso)flavonoid backbones are modified by reduction reactions and how enzymes specifically recognize isoflavonoids and catalyze stereo-specific reductions. Structural studies of isoflavonoid methyltransferases and glycosyltransferases revealed how isoflavonoids are further decorated with methyl group and sugars in different methylation and glycosylation patterns that determine their bioactivities and functions. In combination with mutagenesis and biochemical studies, the detailed structural information of these enzymes provides a basis for understanding the complex biosynthetic process, enzyme catalytic mechanisms, and substrate specificities. Structure-based homology modeling facilitates the functional characterization of these large groups of biosynthetic enzymes and their homologs. Structure-based enzyme engineering is becoming a new strategy for synthesis of bioactive isoflavonoids and also facilitates plant metabolic engineering towards improvement of quality and production of crop plants.  相似文献   

3.
异黄酮是一类具有C-6/C-3/C-6骨架的二次代谢产物,具有抗氧化和抗肿瘤活性。异黄酮与黄酮类物质具有相似的苯丙烷生物合成途径。天然的绝大部分异黄酮分布在豆科植物中,目前在大豆中已经发现了超过12个异黄酮(苷)。大豆异黄酮的生物合成主要涉及三个关键的酶查尔酮合酶(CHS)、查尔酮异构酶(CHI)和异黄酮合酶(IFS)。总结了大豆异黄酮的提取分离方法和生物合成途径,着重综述了CHI、CHS、IFS生物学特征和功能及异黄酮的代谢工程研究。  相似文献   

4.
Lapcík O 《Phytochemistry》2007,68(22-24):2909-2916
Isoflavonoids are characteristic metabolites in legumes and an overwhelming number of reports concerning them come from the Leguminosae. Nevertheless, the spectrum of isoflavonoid producing taxa includes the representatives of four classes of multicellular plants, namely the Bryopsida, the Pinopsida, the Magnoliopsida and the Liliopsida. At least 59 non-leguminous families have been reported to produce isoflavones sensu lato; coumestans have been reported in 3 families, coumaronochromones in 3, pterocarpans in 9 and rotenoids in 8 families. Prenylated isoflavones have been found in 15 non-leguminous families and isoflavone dimers, heterodimers or oligomers in three families. More than two hundred different isoflavonoid aglycones have been reported in non-legumes altogether. The number of individual structures is even greater if the variety of glycosides are considered. Enzymology and genetics of isoflavonoid biosynthesis have been studied almost exclusively in legumes, with the exception of a few model plants (i.e. Beta vulgaris, Arabidopsis thaliana, Nicotiana tabacum and Zea mays). The key step at the very beginning of the isoflavonoid metabolic pathway is the oxidation of flavanone connected with the migration of aryl moiety from C2 to C3 mediated by a CYP450 enzyme isoflavone synthase (IFS), which has been identified and cloned in multiple legumes and in sugar beet (Beta vulgaris, Chenopodiaceae). No information is available about the enzyme(s) responsible for the biosynthesis of isoflavonoid core in other taxa. Experimental data demonstrates the capability of numerous enzymes of non-legume origin to metabolize isoflavones as alternative substrates to other phenolics.  相似文献   

5.
Engineering isoflavone metabolism with an artificial bifunctional enzyme   总被引:7,自引:0,他引:7  
Tian L  Dixon RA 《Planta》2006,224(3):496-507
Plant secondary metabolism has been a focus of research in recent years due to its significant roles in plant defense and in human medicine and nutrition. A protein engineering strategy was designed to more effectively manipulate plant secondary metabolite (isoflavonoid) biosynthesis. A bifunctional isoflavone synthase/chalcone isomerase (IFS/CHI) enzyme was constructed by in-frame gene fusion, and expressed in yeast and tobacco. The fusion protein was targeted to the endoplasmic reticulum (ER) membrane and the individual enzymatic functions of its component fragments were retained when assayed in yeast. Petals and young leaves of IFS/CHI transgenic tobacco plants produced higher levels of the isoflavone genistein and genistein glycosides as a ratio of total flavonoids produced than did plants transformed with IFS alone. Thus, through a combined molecular modeling, in vitro protein engineering and in planta metabolic engineering approach, it was possible to increase the potential for accumulation of isoflavonoid compounds in non-legume plants. Construction of bifunctional enzymes will simplify the transformation of plants with multiple pathway genes, and such enzymes may find broad uses for enzyme (e.g., cytochrome P450 family) and biochemical pathway engineering.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
As a major component of plant specialized metabolism, phenylpropanoid biosynthetic pathways provide anthocyanins for pigmentation, flavonoids such as flavones for protection against UV photodamage, various flavonoid and isoflavonoid inducers of Rhizobium nodulation genes, polymeric lignin for structural support and assorted antimicrobial phytoalexins. As constituents of plant-rich diets and an assortment of herbal medicinal agents, the phenylpropanoids exhibit measurable cancer chemopreventive, antimitotic, estrogenic, antimalarial, antioxidant and antiasthmatic activities. The health benefits of consuming red wine, which contains significant amounts of 3,4',5-trihydroxystilbene (resveratrol) and other phenylpropanoids, highlight the increasing awareness in the medical community and the public at large as to the potential dietary importance of these plant derived compounds. As recently as a decade ago, little was known about the three-dimensional structure of the enzymes involved in these highly branched biosynthetic pathways. Ten years ago, we initiated X-ray crystallographic analyses of key enzymes of this pathway, complemented by biochemical and enzyme engineering studies. We first investigated chalcone synthase (CHS), the entry point of the flavonoid pathway, and its close relative stilbene synthase (STS). Work soon followed on the O-methyl transferases (OMTs) involved in modifications of chalcone, isoflavonoids and metabolic precursors of lignin. More recently, our groups and others have extended the range of phenylpropanoid pathway structural investigations to include the upstream enzymes responsible for the initial recruitment of phenylalanine and tyrosine, as well as a number of reductases, acyltransferases and ancillary tailoring enzymes of phenylpropanoid-derived metabolites. These structure-function studies collectively provide a comprehensive view of an important aspect of phenylpropanoid metabolism. More specifically, these atomic resolution insights into the architecture and mechanistic underpinnings of phenylpropanoid metabolizing enzymes contribute to our understanding of the emergence and on-going evolution of specialized phenylpropanoid products, and underscore the molecular basis of metabolic biodiversity at the chemical level. Finally, the detailed knowledge of the structure, function and evolution of these enzymes of specialized metabolism provide a set of experimental templates for the enzyme and metabolic engineering of production platforms for diverse novel compounds with desirable dietary and medicinal properties.  相似文献   

7.
8.
9.
Plants interact with their environment by producing a diverse array of secondary metabolites. A majority of these compounds are phenylpropanoids and flavonoids which are valued for their medicinal and agricultural properties. The phenylpropanoid biosynthesis pathway proceeds with the basic C6-C3 carbon skeleton of phenylalanine, and involves a wide range of enzymes viz., phenylalanine ammonia lyase, coumarate hydroxylase, coumarate ligase, chalcone synthase, chalcone reductase and chalcone isomerase. Recently, bacteria have also been shown to contain homodimeric polyketide synthases belonging to the plant chalcone synthase superfamily linking the capabilities of plants and bacteria in the biosynthesis of flavonoids. We report here the presence of genes encoding the core enzymes of the phenylpropanoid pathway in an industrially useful fungus, Aspergillus oryzae. Although the assignment of enzyme function must be confirmed by further biochemical evidences, this work has allowed us to anticipate the phenylpropanoid metabolism profile in a filamentous fungus for the first time and paves way for research on identifying novel fungal flavonoid-like metabolites.  相似文献   

10.
Xu RY  Nan P  Yang Y  Pan H  Zhou T  Chen J 《Physiologia plantarum》2011,142(3):265-273
Isoflavonoids are a group of phenolic secondary metabolites found almost exclusively in leguminous plants. Formononetin, calycosin and calycosin-7-O-β-d-glucoside (CG) are isoflavonoid products in the CG pathway. Accumulation of the three isoflavonoids plus daidzein and expression of six genes of enzymes involved in the CG pathway were studied in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao with ultraviolet (UV) irradiation. Our results showed that (1) main isoflavonoids in roots, stems and leaves were CG, daidzein and calycosin, respectively; they accumulated significantly under the induction of UV irradiation during 8 days but their content declined later; (2) expression of six genes of enzymes involved in the CG pathway was inhibited slightly at early stage but the expression was increased greatly afterward; (3) chalcone synthase, chalcone reductase and chalcone isomerase were expressed to their individual maximum level within shorter hours than were cinnamate 4-hydroxylase, isoflavone synthase (IFS) and isoflavone 3'-hydroxylase and (4) more calycosin but less daidzein accumulated in leaves. IFS was highly expressed in leaves, which might lead to high accumulation of the common precursor of daidzein and 2,7-dihydroxy-4'-O-methoxy-isoflavanone, the latter of which would be converted to formononetin, calycosin and CG via a series of reactions. Little daidzein accumulated in leaves, which suggested that rather than be converted to daidzein, the 2,7,4'-trihydroxyisoflavanone was probably more easily caught by 2-hydroxyisoflavanone 4'-O-methyltransferase and hence provided more precursors for formononetin. The findings were discussed in terms of the influence of UV irradiation in the accumulation of isoflavonoids.  相似文献   

11.
12.
Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar (R374G) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars (A109T, F105I). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings.  相似文献   

13.
Li X  Qin JC  Wang QY  Wu X  Lang CY  Pan HY  Gruber MY  Gao MJ 《Plant cell reports》2011,30(8):1435-1442
Genistein, 4′,5,7-trihydroxyisoflavone, is an isoflavonoid compound predominantly restricted to legumes and known to possess phyto-oestrogenic and antioxidative activities. The key enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to isoflavonoids is the isoflavone synthase (IFS). Brassica napus is a non-legume oilseed crop with vegetative tissues producing phenylpropanoids and flavonoids, but does not naturally accumulate isoflavones due to the absence of IFS. To demonstrate whether exogenous IFS is able to use endogenous substrate to produce isoflavone genistein in oilseed crop, the soybean IFS gene (GmIFS2) was incorporated into B. napus plants. The presence of GmIFS2 in B. napus was shown to direct the synthesis and accumulation of genistein derivatives in leaves up to 0.72 mg g−1 DW. In addition, expression levels for most B. napus genes in the phenylpropanoid pathway were altered. These results suggest that the heterologous GmIFS2 enzyme is functionally active at using the B. napus naringenin as a substrate to produce genistein in oilseed rape.  相似文献   

14.
Metabolons involving plant cytochrome P450s   总被引:2,自引:0,他引:2  
Arranging biological processes into “compartments” is a key feature of all eukaryotic cells. Through this mechanism, cells can drastically increase metabolic efficiency and manage complex cellular processes more efficiently, saving space and energy. Compartmentation at the molecular level is mediated by metabolons. A metabolon is an ordered protein complex of sequential metabolic enzymes and associated cellular structural elements. The sub-cellular organization of enzymes involved in the synthesis and storage of plant natural products appears to involve the anchoring of metabolons by cytochrome P450 monooxygenases (P450s) to specific domains of the endoplasmic reticulum (ER) membrane. This review focuses on the current evidence supporting the organization of metabolons around P450s on the surface of the ER. We␣outline direct and indirect experimental data that describes P450 enzymes in the phenylpropanoid, flavonoid, cyanogenic glucoside, and other biosynthetic pathways. We also discuss the limitations and future directions of metabolon research and the potential for application to metabolic engineering endeavors.  相似文献   

15.
Isoflavonoids are a diverse group of secondary metabolites derived from the phenylpropanoid pathway. These compounds are distributed predominantly in leguminous plants and play important roles in plant–environment interactions and human health. Consequently, the biosynthetic pathway of isoflavonoid compounds has been widely elucidated in the past decades. Up to now, most of the structural genes and some of the regulatory genes involved in this pathway have been isolated and well characterized. Nowadays, the protective effects of the legume isoflavonoids against hormone dependent cancers, cardiovascular disease, osteoporosis, and menopausal symptoms have generated considerable interest within the genetic and metabolic engineering fields to enhance the dietary intake of these compounds for disease prevention. Subsequently, there are some great progresses in genetic and metabolic engineering to improve their yields in leguminous and non-leguminous plants and/or microorganisms. Because of the field of flavonoid biosynthesis has been reviewed fairly extensively in the past, this review concentrates on the more recent development in the isoflavonoid branch of phenylpropanoid pathway, including gene isolation and characterization. In addition, we describe the state-of-the-art research with respect to genetic and metabolic engineering of isoflavonoid biosynthesis.  相似文献   

16.
17.
18.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4'-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

19.
20.
Flavones are plant secondary metabolites that have wide pharmaceutical and nutraceutical applications. We previously constructed a recombinant flavanone pathway by expressing in Saccharomyces cerevisiae a four-step recombinant pathway that consists of cinnamate-4 hydroxylase, 4-coumaroyl:coenzyme A ligase, chalcone synthase, and chalcone isomerase. In the present work, the biosynthesis of flavones by two distinct flavone synthases was evaluated by introducing a soluble flavone synthase I (FSI) and a membrane-bound flavone synthase II (FSII) into the flavanone-producing recombinant yeast strain. The resulting recombinant strains were able to convert various phenylpropanoid acid precursors into the flavone molecules chrysin, apigenin, and luteolin, and the intermediate flavanones pinocembrin, naringenin, and eriodictyol accumulated in the medium. Improvement of flavone biosynthesis was achieved by overexpressing the yeast P450 reductase CPR1 in the FSII-expressing recombinant strain and by using acetate rather than glucose or raffinose as the carbon source. Overall, the FSI-expressing recombinant strain produced 50% more apigenin and six times less naringenin than the FSII-expressing recombinant strain when p-coumaric acid was used as a precursor phenylpropanoid acid. Further experiments indicated that unlike luteolin, the 5,7,4′-trihydroxyflavone apigenin inhibits flavanone biosynthesis in vivo in a nonlinear, dose-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号