首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes.  相似文献   

2.
The human IL-3 gene is expressed by activated T cells, mast cells, and eosinophils. We previously identified an enhancer 14 kb upstream of the IL-3 gene, but this element only functioned in a subset of T cells and not in mast cells. To identify additional mechanisms governing IL-3 gene expression, we mapped DNase I hypersensitive (DH) sites and evolutionarily conserved DNA sequences in the IL-3 locus. The most conserved sequence lies 4.5 kb upstream of the IL-3 gene and it encompassed an inducible cyclosporin A-sensitive DH site. A 245-bp fragment spanning this DH site functioned as a cyclosporin A-sensitive enhancer, and was induced by calcium and kinase signaling pathways in both T cells and mast cells via an array of three NFAT sites. The enhancer also encompassed AML1, AP-1, and Sp1 binding sites that potentially mediate function in both T and myeloid lineage cells, but these sites were not required for in vitro enhancer function in T cells. In stably transfected T cells, the -4.5-kb enhancer cooperated with the -14-kb enhancer to activate the IL-3 promoter. Hence, the IL-3 gene is regulated by two enhancers that have distinct but overlapping tissue specificities. We also identified a prominent constitutive DH site at -4.1 kb in T cells, mast cells, and CD34(+) myeloid cells. This element lacked in vitro enhancer function, but may have a developmental role because it appears to be the first DH site to exist upstream of the IL-3 gene during hemopoietic development before IL-3 expression.  相似文献   

3.
4.
5.
IL-4 expression is known to be activated in CD4 T cells when they are differentiated to Th2 but not Th1 cells. However, CD4 T cells selected by MH class II-expressing thymocytes, named thymocyte-selected CD4 T cells (T-CD4 T cells), express IL-4 under both Th1 and Th2 conditions. In this study, we investigated molecular mechanisms by which IL-4 gene expression is regulated in T-CD4 T cells. We found that T-CD4 T cells express IL-4 soon after selection in the thymus. Deficiency of DNase I hypersensitive (HS) sites HS5a and HS5 at the 3'-enhancer region in the IL-4 gene decreased IL-4 production, but T-CD4 T cells were able to make IL-4 under the Th1-inducing condition. Consistent with this, IL-4 was expressed in Th1 differentiated T-CD4 T cells in the absence of recombination signal binding protein-J that interacts with HS5. When HS5 was examined separately from other endogenous regulatory elements using a reporter system, CD4 T cells that are selected by thymic epithelial cells cannot transcribe the IL-4 reporter gene with HS5 alone. However, HS5 was able to induce the expression of the IL-4 reporter gene in T-CD4 T cells. Interestingly, the Th1 differentiating signal led to deacetylation at HS5 of the IL-4 endogenous gene, whereas the Th2-inducing environment had no effect. Therefore, in T-CD4 T cells, HS5 plays an essential role during the induction phase of IL-4 expression, but the maintenance of IL-4 expression in Th1 cells requires additional regulatory elements.  相似文献   

6.
7.
8.
We describe the purification to near homogeneity of proteins binding to site C2 (muE3) in the immunoglobulin heavy-chain enhancer. Proteins binding to this site produce four protein-DNA complexes which are distinguished by their mobility in gel retardation assays and their elution properties in an anion exchange column. DNA affinity-purified preparations of three chromatographically separated pools, containing different subsets of the four complexes, each contained three polypeptides of 42.5, 44, and 45 kilodaltons (kDa). UV crosslinking of protein to enhancer DNA demonstrated that site C2-binding activities in the three different pools bound DNA through proteins of similar sizes (about 45 kDa), even though the protein-DNA complexes formed by these binding activities were quite distinct. Gel exclusion chromatography and equilibrium binding analyses indicated that the distinct protein-DNA complexes were due to different oligomeric forms of the individual subunits and that a larger multimeric form bound with high affinity to the heavy-chain enhancer site C2, while a smaller species had a much lower affinity for heavy-chain enhancer sequences. Purified protein has been used to map high-affinity binding sites for site C2-binding proteins within an immunoglobulin heavy-chain promoter and at site KE3 in the kappa light-chain enhancer.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
IL-4 secreted by activated T cells is a pleiotropic cytokine affecting growth and differentiation of diverse cell types such as T cells, B cells, and mast cells. We investigated the upstream regulatory elements of the human IL-4 promoter. A novel T cell-specific negative regulatory element (NRE) composed of two protein-binding sites were mapped in the 5' flanking region of the IL-4 gene: -311CTCCCTTCT-303 (NRE-I) and -288CTTTTTGCTT-TGC-300 (NRE-II). A T cell-specific protein Neg-1 and a ubiquitous protein Neg-2 binding to NRE-I and NRE-II, respectively, were identified. Furthermore, a positive regulatory element was found 45 bp downstream of the NRE. The enhancer activity of the PRE was completely suppressed when the NRE was present. These data suggest that IL-4 promoter activity is normally down-regulated by an NRE via repression of the enhancer positive regulatory element. These data may have implications for the stringent control of IL-4 expression in T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号