首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P2X7 is a homotrimeric ion channel with two transmembrane domains and a large extracellular ATP-binding domain. It plays a key role in the response of immune cells to danger signals released from cells at sites of inflammation. Gating of murine P2X7 can be induced by the soluble ligand ATP, as well as by NAD(+)-dependent ADP-ribosylation of arginine 125, a posttranslational protein modification catalyzed by the toxin-related ecto-enzymes ART2.1 and ART2.2. R125 is located at the edge of the ligand-binding crevice. Recently, an alternative splice variant of P2X7, designated P2X7(k), was discovered that differs from the previously described variant P2X7(a) in the N-terminal 42 amino acid residues composing the first cytosolic domain and most of the Tm1 domain. Here we compare the two splice variants of murine P2X7 with respect to their sensitivities to gating by ADP-ribosylation in transfected HEK cells. Our results show that the P2X7(k) variant is sensitive to activation by ADP-ribosylation whereas the P2X7(a) variant is insensitive, despite higher cell surface expression levels. Interestingly, a single point mutation (R276K) renders the P2X7(a) variant sensitive to activation by ADP-ribosylation. Residue 276 is located at the interface of neighboring subunits approximately halfway between the ADP-ribosylation site and the transmembrane domains. Moreover, we show that naive and regulatory T cells preferentially express the more sensitive P2X7(k) variant, while macrophages preferentially express the P2X7(a) variant. Our results indicate that differential splicing of alternative exons encoding the N-terminal cytosolic and transmembrane domains of P2X7 control the sensitivity of different immune cells to extracellular NAD(+) and ATP.  相似文献   

2.
The P2X7 receptor (P2X7R) is a member of the ATP-gated ion channel family that exhibits distinct electrophysiological and pharmacological properties. This includes low sensitivity to ATP, lack of desensitization, a sustained current growth during prolonged receptor stimulation accompanied with development of permeability to large organic cations, and the coupling of receptor activation to cell blebbing and death. The uniquely long C-terminus of P2X7R accounts for many of these receptor-specific functions. The aim of this study was to understand the role of conserved ectodomain cysteine residues in P2X7R function. Single- and double-point threonine mutants of C119-C168, C129-C152, C135-C162, C216-C226, and C260-C269 cysteine pairs were expressed in HEK293 cells and studied using whole-cell current recording. All mutants other than C119T-P2X7R responded to initial and subsequent application of 300-μM BzATP and ATP with small amplitude monophasic currents or were practically nonfunctional. The mutagenesis-induced loss of function was due to decreased cell-surface receptor expression, as revealed by assessing levels of biotinylated mutants. Coexpression of all double mutants with the wild-type receptor had a transient or, in the case of C119T/C168T double mutant, sustained inhibitory effect on receptor trafficking. The C119T-P2X7R mutant was expressed on the plasma membrane and was fully functional with a slight decrease in the sensitivity for BzATP, indicating that interaction of liberated Cys168 with another residue rescues the trafficking of receptor. Thus, in contrast to other P2XRs, all disulfide bonds of P2X7R are individually essential for the proper receptor trafficking.  相似文献   

3.
The cytolytic P2X7 purinoceptor is widely expressed on leucocytes and has sparked interest because of its peculiar ability to induce a large nonselective membrane pore following treatment of cells with ecto-ATP. Antibodies raised against synthetic P2X7 peptides generally work well in Western-Blot analyses but fail to recognize the native protein on the cell surface. Genetic immunization is a useful technique to raise antibodies directed against proteins in native conformation. Using this technique we have generated highly specific polyclonal (rabbit) and monoclonal (rat) anti-P2X7 antibodies that readily detect mouse P2X7 on the surface of living cells by immunofluorescence analyses and flow cytometry. Binding of these antibodies to P2X7 is reduced within seconds after treatment of cells with ATP, suggesting that ligand binding induces a conformational shift and/or the shedding of P2X7. By site directed mutagenesis we have mutated three conserved arginine residues (R294A, R307A, R316A) in the extracellular loop of P2X7 near the second transmembrane region. Each of these mutations results in loss of ATP response. FACS and immunoblot analyses reveal that the R294A mutant is expressed at higher levels than wild-type P2X7 in transfected cells, whereas the R307A and R316A mutants are barely detectable because there is no or very little protein synthesis of these constructs. In accord with its resistance to ATP-induced activation the R294A mutant is not down-modulated from the cell surface by ATP-treatment.  相似文献   

4.
The localization of ATP binding site(s) at P2X receptors and the molecular rearrangements associated with opening and closing of channels are still not well understood. At P2X(4) receptor, substitution of the K67, F185, K190, F230, R278, D280, R295, and K313 ectodomain residues with alanine generated low or non-responsive mutants, whereas the F294A mutant was functional. The loss of receptor function was also observed in K67R, R295K, and K313R mutants, but not in F185W, K190R, F230W, R278K, and D280E mutants. To examine whether the loss of function reflects decreased sensitivity of mutants for ATP, we treated cells with ivermectin, an antiparasitic agent that enhances responsiveness of P2X(4)R. In the presence of ivermectin, all low or non-responsive mutants responded to ATP in a dose-dependent manner, with the EC(50) values for ATP of about 1, 2, 4, 20, 60, 125, 270, 420, 1000 and 2300 micromol/L at D280A, R278A, F185A, K190A, R295K, K313R, R295A, K313A, K67A and K67R mutants, respectively. These results indicate that lysines 67 and 313 and arginine 295 play a critical role in forming the proper three-dimensional structure of P2X(4)R for agonist binding and/or channel gating.  相似文献   

5.
P2X(4) and P2X(7) receptors are abundantly expressed in alveolar epithelial cells, and are thought to play a role in regulating fluid haemostasis. Here, we analyzed the expression and localization of the P2X(4)R, and characterized the interaction between Cav-1 and both P2X(4)R and P2X(7)R in the mouse alveolar epithelial cell line E10. Using the biotinylation assay, we found that only glycosylated P2X(4)R is exposed at the cell surface. Triton X-100 solubility experiments and sucrose gradient centrifugation revealed that P2X(4)R was partially localized in Cav-1 rich membrane fractions. Cholesterol depletion with Mbeta-CD displaced Cav-1 and P2X(4)R from the low-density to the high-density fractions. Suppression of Cav-1 protein expression using short hairpin RNAs resulted in a large reduction in P2X(4)R levels. Double immunofluorescence showed that P2X(4)R and Cav-1 partially colocalize in vitro. Using the GST pull-down assay, we showed that Cav-1 interacts in vitro with both P2X(4)R and P2X(7)R. Co-immunoprecipitation experiments confirmed the interaction between P2X(7)R and Cav-1. ATP stimulation increased the level of P2X(4)R in the lipid raft/caveolae fraction, whereas Cav-1 content remained constant. Our results support recent evidence that P2X receptors are present in both raft and non-raft compartments of the plasma membrane and thus exhibit variable ATP sensitivity.  相似文献   

6.
The P2X(7) receptor (P2X(7)R), an ATP-gated ion channel, has been implicated in the process of cell-to-cell fusion into multinucleated macrophages (MA), but its contribution to MA fusion driven by physiological/pathological stimuli is not clearly established. Based on several lines of evidence, we demonstrate that P2X(7)R is critical for the induction of multinucleated MA by the inflammatory cytokine GM-CSF: 1) pharmacological inhibition of P2X(7)R with oxidized ATP (oATP), KN-62, and the selective antagonist A740003 abrogated GM-CSF action on rat alveolar MA and murine peritoneal MA; 2) a murine J774 P2X(7) low MA clone, selected for defective P2X(7)R function, was unresponsive; 3) MA from mice lacking P2X(7)R failed to respond to GM-CSF, in contrast to wild-type. GM-CSF also stimulated ATP-induced membrane permeabilization in J774 P2X(7) high MA and rat alveolar MA, an effect absent in the P2X(7) low MA clone and inhibited by the P2X(7) blockers oATP and KN-62. Notably, the stimulatory effects of GM-CSF on pore formation and MA fusion were both inhibited by blocking functional Pannexin-1 (Panx-1), and GM-CSF failed to stimulate MA fusion in cells from Panx-1 knockout mice. We provide further evidence that extracellular ATP release from peritoneal MA is dependent on P2X(7) but not on Panx-1 expression and that its metabolism to adenosine mediates P2X(7)-dependent MA fusion. These data demonstrate that both P2X(7) and Panx-1 are required for GM-CSF promotion of MA fusion but likely act independently through different signaling pathway(s).  相似文献   

7.
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.  相似文献   

8.
P2X7 receptors (P2X7Rs) affect many epithelial cell functions including transcellular ion transport, secretion, and cell death. Here we used parotid acinar and duct cells to reveal the unique cell-specific assembly and gating of the P2X7R channels. Immunolocalization indicated expression of P2X7Rs in the luminal membrane of both cell types. Stimulation with 5 mm ATP raised [Ca2+]i levels in a cell-specific manner and activated multiple currents. The current mediated by P2X7R was isolated by infusing the cells with high [EGTA]. The initial activation of acinar cell P2X7Rs by ATP was slow requiring approximately 2.5 min. Subsequent removal and addition of ATP, however, resulted in rapid inhibition and activation (gating) of the P2X7Rs. By contrast, P2X7Rs in duct cells displayed only rapid gating by ATP. Activation of P2X7Rs in both cell types was verified by (a) low Km for ATP, (b) sensitivity to external divalent ions, (c) lack of desensitization/inactivation, (d) permeability to Na+, and (e) inhibition by Brilliant Blue G, Cu2+, and pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium. The slow P2X7R activation in acinar cells was not affected by manipulation of exo-/endocytosis. Rather, disassembly or solidification of the actin cytoskeleton prior to incubation with ATP prevented channel assembly. Remarkably, after completion of the slow activation, manipulation of the actin cytoskeleton no longer affected gating by ATP. Accordingly, manipulation of the actin cytoskeleton had no effect on P2X7R gating by ATP in duct cells. We concluded that P2X7Rs are not active in resting acinar cells. On exposure to ATP, P2X7Rs are assembled into functional channels with the aid of the actin cytoskeleton. Once assembled, P2X7Rs are subject to rapid gating by ATP. Duct cell P2X7Rs are preassembled and therefore continually subject to rapid gating by ATP. This cell-specific behavior may reflect the specific function of P2X7Rs in the two cell types.  相似文献   

9.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

10.
In response to ATP binding, the P2X7R facilitates cation channel activation, nonspecific pore formation, rapid changes in plasma membrane morphology, and secretion of IL-1 beta from LPS-primed macrophages. To investigate the relationship between the P2X7R-dependent changes in plasma membrane organization and the release of IL-1 beta, we generated time-lapse movies of ATP-stimulated BAC1 murine macrophages in conjunction with biochemical analyses of IL-1 beta release. Similar image analyses in human embryonic kidney 293 cells expressing recombinant P2X7R (HEK-P2X7) permitted comparison of P2X7R-dependent effects in macrophage vs nonmacrophage backgrounds. Whereas HEK-P2X7 cells exhibit zeiotic blebbing within 5 min of ATP treatment, BAC1 macrophages initiated a distinct "tethered" blebbing 10 min after ATP addition. This blebbing was comparably induced by the P2X7R-selective agonist BzATP and was blocked by P2X7R inhibitors KN-62 and oxidized ATP. Blebbing was initiated at ATP concentrations > or = 3 mM, but optimal IL-1 beta release occurred at 1 mM ATP. P2X7R-dependent blebbing was abrogated in the presence of Rho-effector kinase inhibitors Fasudil and Y-27632, but ATP-induced IL-1 beta release was unaffected. ATP-induced activation of RhoA could be detected in both HEK-P2X7 cells and BAC1 murine macrophages. Thus, P2X7R activation signals distinct, novel membrane blebbing events (dependent on RhoA activation and Rho-effector kinase activity) and simultaneously initiates release of IL-1 beta. Our observations that blebbing and IL-1 beta release are dissociable suggest these events occur via parallel rather than convergent signaling pathways.  相似文献   

11.
The functional relevance of aromatic residues in the upper part of the transmembrane domain-1 of purinergic P2X receptors (P2XRs) was examined. Replacement of the conserved Tyr residue with Ala had a receptor-specific effect: the P2X1R was non-functional, the P2X2R, P2X4R, and P2X3R exhibited enhanced sensitivity to ATP and αβ-meATP accompanied by prolonged decay of current after washout of agonists, and the P2X7R sensitivity for agonists was not affected, though decay of current was delayed. The replacement of the P2X4R-Tyr42 with other amino acids revealed the relevance of an aromatic residue at this position. Mutation of the neighboring Phe and ipsilateral Tyr/Trp residues, but not the contralateral Phe residue, also affected the P2X2R, P2X3R, and P2X4R function. Double mutation of ipsilateral Tyr42 and Trp46 P2X4R residues restored receptor function, whereas the corresponding P2X2R double mutant was not functional. In contrast, mutation of the contralateral Phe48 residue in the P2X4R-Y42A mutant had no effect. These results indicate that aromatic residues in the upper part of TM1 play important roles in the three-dimensional structure of the P2XRs and that they are required not only for ion conductivity but also for specificity of agonist binding and/or channel gating.  相似文献   

12.
Uracil residues are eliminated from cellular DNA by uracil-DNA glycosylase, which cleaves the N-glycosylic bond between the uracil base and deoxyribose to initiate the uracil-DNA base excision repair pathway. Co-crystal structures of the core catalytic domain of human uracil-DNA glycosylase in complex with uracil-containing DNA suggested that arginine 276 in the highly conserved leucine intercalation loop may be important to enzyme interactions with DNA. To investigate further the role of Arg(276) in enzyme-DNA interactions, PCR-based codon-specific random mutagenesis, and site-specific mutagenesis were performed to construct a library of 18 amino acid changes at Arg(276). All of the R276X mutant proteins formed a stable complex with the uracil-DNA glycosylase inhibitor protein in vitro, indicating that the active site structure of the mutant enzymes was not perturbed. The catalytic activity of the R276X preparations was reduced; the least active mutant, R276E, exhibited 0.6% of wildtype activity, whereas the most active mutant, R276H, exhibited 43%. Equilibrium binding studies utilizing a 2-aminopurine deoxypseudouridine DNA substrate showed that all R276X mutants displayed greatly reduced base flipping/DNA binding. However, the efficiency of UV-catalyzed cross-linking of the R276X mutants to single-stranded DNA was much less compromised. Using a concatemeric [(32)P]U.A DNA polynucleotide substrate to assess enzyme processivity, human uracil-DNA glycosylase was shown to use a processive search mechanism to locate successive uracil residues, and Arg(276) mutations did not alter this attribute.  相似文献   

13.
Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.  相似文献   

14.
Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity.  相似文献   

15.
The potential to use Schwann cells (SCs) in neural repair for patients suffering from neurotrauma and neurodegenerative diseases is well recognized. However, significant cell death after transplantation hinders the clinical translation of SC-based therapies. Various factors may contribute to the death of transplanted cells. It is known that prolonged activation of P2X7 purinoceptors (P2X7R) can lead to death of certain types of cells. In this study, we show that rat SCs express P2X7R and exposure of cultured SCs to high concentrations of ATP (3–5 mM) or a P2X7R agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP (BzATP) induced significant cell death rapidly. High concentrations of ATP and BzATP increased ethidium uptake by SCs, indicating increased membrane permeability to large molecules, a typical feature of prolonged P2X7R activation. SC death, as well as ethidium uptake, induced by ATP was blocked by an irreversible P2X7R antagonist oxidized ATP (oxATP) or a reversible P2X7R antagonist A438079. oxATP also significantly inhibits the increase of intracellular free calcium induced by minimolar ATP concentrations. Furthermore, ATP did not cause death of SCs isolated from P2X7R-knockout mice. All these results suggest that P2X7R is responsible for ATP-induced SC death in vitro. When rat SCs were treated with oxATP before transplantation into uninjured rat spinal cord, 35% more SCs survived than untreated SCs 1 week after transplantation. Moreover, 58% more SCs isolated from P2X7R-knockout mice survived after being transplanted into rat spinal cord than SCs from wild-type mice. This further confirms that P2X7R is involved in the death of transplanted SCs. These results indicate that targeting P2X7R on SCs could be a potential strategy to improve the survival of transplanted cells. As many other types of cells, including neural stem cells, also express P2X7R, deactivating P2X7R may improve the survival of other types of transplanted cells.  相似文献   

16.
Pannexin1 is a prime candidate to represent an ATP release channel. The pannexin1 channel can be activated by extracellular ATP through purinergic receptors P2X7 or P2Y. Recent studies have shown that the Pannexin1 channel is inhibited by its own permeant ion, ATP, and also by P2X7 receptor agonists and antagonists. However, the dose dependence of this inhibition indicated that significant inhibition was prominent at ATP concentrations higher than required for activation of purinergic receptors, including P2X7 and P2Y2. The inhibitory effect of ATP is largely decreased when R75 in the first extracellular loop of Pannexin1 is mutated to alanine, indicating that ATP regulates this channel presumably through binding. To further investigate the structural property of the putative ATP binding site, we performed alanine-scanning mutagenesis of the extracellular loops of pannexin1. Mutations on W74, S237, S240, I247 and L266 in the extracellular loops 1 and 2 severely impaired the inhibitory effect of BzATP, indicating that they might be the essential amino acids in the putative binding site. Mutations on R75, S82, S93, L94, D241, S249, P259 and I267 moderately (≥50%) decreased BzATP sensitivity, suggesting their supporting roles in the binding. Mutations of other residues did not change the BzATP potency compared to wild-type except for some nonfunctional mutants. These data demonstrate that several amino acid residues on the extracellular loops of Pannexin1 mediate ATP sensitivity. Cells expressing mutant Panx1W74A exhibited an enhanced release of ATP, consistent with the removal of a negative feedback loop controlling ATP release.  相似文献   

17.
Several mechanistically distinct models of nonclassical secretion, including exocytosis of secretory lysosomes, shedding of plasma membrane microvesicles, and direct efflux through plasma membrane transporters, have been proposed to explain the rapid export of caspase-1-processed IL-1 beta from monocytes/macrophages in response to activation of P2X7 receptors (P2X7R) by extracellular ATP. We compared the contribution of these mechanisms to P2X7R-stimulated IL-1 beta secretion in primary bone marrow-derived macrophages isolated from wild-type, P2X7R knockout, or apoptosis-associated speck-like protein containing a C-terminal CARD knockout mice. Our experiments revealed the following: 1) a novel correlation between IL-1 beta secretion and the release of the MHC-II membrane protein, which is a marker of plasma membranes, recycling endosomes, multivesicular bodies, and released exosomes; 2) a common and absolute requirement for inflammasome assembly and active caspase-1 in triggering the cotemporal export of IL-1 beta and MHC-II; and 3) mechanistic dissociation of IL-1 beta export from either secretory lysosome exocytosis or plasma membrane microvesicle shedding on the basis of different requirements for extracellular Ca(2+) and differential sensitivity to pharmacological agents that block activation of caspase-1 inflammasomes. Thus, neither secretory lysosome exocytosis nor microvesicle shedding models constitute the major pathways for nonclassical IL-1 beta secretion from ATP-stimulated murine macrophages. Our findings suggest an alternative model of IL-1 beta release that may involve the P2X7R-induced formation of multivesicular bodies that contain exosomes with entrapped IL-1 beta, caspase-1, and other inflammasome components.  相似文献   

18.
Residues considered essential for ATP binding to the human P2X(7) receptor (hP2X(7)R) were investigated. HEK293 cells or Xenopus oocytes were transfected with wild-type or site-directed mutants of hP2X(7)R constructs and channel/pore activity measured in the presence of ATP or 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP). Barium uptake and ethidium influx into HEK293 cells were abolished in cells expressing K193A and K311A mutants, and were partially reduced in cells expressing mutant P210A. K193A and K311A mutations also completely abolished responses to ATP and BzATP in Xenopus oocytes as measured by electrophysiology. These results indicate that K193 and K311 are essential residues in ATP binding in the hP2X(7)R.  相似文献   

19.
Contact of T lymphocytes with nicotinamide adenine dinucleotide (NAD) or ATP causes cell death that requires expression of purinergic receptor P2X(7) (P2X(7)R). T cell subsets differ in their responses to NAD and ATP, which awaits a mechanistic explanation. Here, we show that sensitivity to ATP correlates with P2X(7)R expression levels in CD4 cells, CD8 cells and CD4(+)CD25(+) cells from both C57BL/6 and BALB/c mice. But P2X(7)R ligands do not only induce cell death but also shedding of CD62L. It is shown here that in CD62L(high) T cells, CD62L shedding correlates with low expression of P2X(7)Rs and lower cell death, whereas in CD62L(low) cells P2X(7)R expression and death are higher. The possibility is therefore investigated that P2X(7)Rs induce T cell activation. Experiments show that spontaneous T cell proliferation is somewhat higher in cells expressing P2X(7)Rs, but this effect we suggest is caused by P2X(7)R expression on accessory cells.  相似文献   

20.
Esophageal cancer is an aggressive tumor and is the sixth leading cause of cancer death worldwide. ATP is well known to regulate cancer progression in a variety of models by different mechanisms, including P2X7R activation. This study aimed to evaluate the role of P2X7R in esophageal squamous cell carcinoma (ESCC) proliferation. Our results show that treatment with high ATP concentrations induced a decrease in cell number, cell viability, number of polyclonal colonies, and reduced migration of ESCC. The treatment with the selective P2X7R antagonist A740003 or siRNA for P2X7 reverted this effect in the KYSE450 cell line. In addition, results showed that P2X7R is highly expressed, at mRNA and protein levels, in KYSE450 lineage. Additionally, KYSE450, KYSE30, and OE21 cells express P2X3R, P2X4R, P2X5R, P2X6R, and P2X7R genes. P2X1R is expressed by KYSE30 and KYSE450, and only KYSE450 expresses the P2X2R gene. Furthermore, esophageal cancer cell line KYSE450 presented higher expression of E-NTPDases 1 and 2 and of Ecto-5′-NT/CD73 when compared to normal cells. This cell line also exhibits ATPase, ADPase, and AMPase activity, although in different levels, and the co-treatment of apyrase was able to revert the antiproliferative effects of ATP. Moreover, results showed high immunostaining for P2X7R in biopsies of patients with esophageal carcinoma, indicating the involvement of this receptor in the growth of this type of cancer. The results suggest that P2X7R may be a potential pharmacological target to treat ESCC and can lead us to further investigate the effect of this receptor in cancer cell progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号