首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxic Microcystis blooms frequently occur in eutrophic water bodies and exist in the form of colonial and unicellular cells. In order to understand the mechanism of Microcystis dominance in freshwater bodies, the physiological and biochemical responses of unicellular (4 strains) and colonial (4 strains) Microcystis strains to phosphorus (P) were comparatively studied. The two phenotype strains exhibit physiological differences mainly in terms of their response to low P concentrations. The growth of four unicellular and one small colonial Microcystis strain was significantly inhibited at a P concentration of 0.2 mg l−1; however, that of the large colonial Microcystis strains was not inhibited. The results of phosphate uptake experiments conducted using P-starved cells indicated that the colonial strains had a higher affinity for low levels of P. The unicellular strains consumed more P than the colonial strains. Alkaline phosphatase activity in the unicellular strains was significantly induced by low P concentrations. Under P-limited conditions, the oxygen evolution rate, F v/F m, and ETR max were lower in unicellular strains than in colonial strains. These findings may shed light on the mechanism by which colonial Microcystis strains have an advantage with regard to dominance and persistence in fluctuating P conditions. Handling editor: L. Naselli-Flores  相似文献   

2.
Enhanced nitrogen (N) levels accelerate expansion of Calamagrostis epigejos and Arrhenatherum elatius, highly aggressive expanders displacing original dry acidophilous grassland vegetation in the Podyjí National Park (Czech Republic). We compared the capability of Calamagrostis and Arrhenatherum under control and N enhanced treatments to (i) accumulate N and phosphorus (P) in plant tissues, (ii) remove N and P from above-ground biomass during senescence and (iii) release N and P from plant material during decomposition of fresh formed litter. In control treatment, significantly higher amounts of total biomass and fresh aboveground litter were observed in Calamagrostis than in Arrhenatherum. Contrariwise, nutrient concentrations were significantly higher (11.6–14.3 mg N g−1 and 2.3 mg P g−1) in Arrhenatherum peak aboveground biomass than in Calamagrostis (8.4–10.3 mg N g−1 and 1.6–1.7 mg P g−1). Substantial differences between species were found in resorption of nutrients, mainly P, at the ends of growing seasons. While P concentrations in Arrhenatherum fresh litter were twice and three times higher (1.6–2.5 mg P g−1) than in Calamagrostis (0.7–0.8 mg P g−1), N concentrations were nearly doubled in Arrhenatherum (13.1–15.6 mg N g−1) in comparison with Calamagrostis (7.4–8.7 mg N g−1). Thus, the nutrients (N and mainly P) were retranslocated from the aboveground biomass of Calamagrostis probably more effectively in comparison with Arrhenatherum at the end of the growing season. On the other hand, Arrhenatherum litter was decomposed faster and consequently nutrient release (mainly N and P) was higher in comparison with Calamagrostis which pointed to different growth and nutrient use strategies of studied grass species.  相似文献   

3.
Although iron is a key nutrient for algal growth just as are nitrogen and phosphorus in aquatic systems, the effects of iron on algal growth are not well understood. The growth characteristics of two species of cyanobacteria, Microcystis aeruginosa and Planktothrix agardhii, in iron-limited continuous cultures were investigated. The relationships between dissolved iron concentration, cell quota of iron, and population growth rate were determined applying two equations, Monod’s and Droop’s equations. Both species produced hydroxamate-type siderophores, but neither species produced catechol-type siderophores. The cell quota of nitrogen for both M. aeruginosa and P. agardhii decreased with decreasing cell quota of iron. The cell quota of phosphorus for M. aeruginosa decreased with decreasing cell quota of iron, whereas those for P. agardhii did not decrease. Iron uptake rate was measured in ironlimited batch cultures under different degrees of iron starvation. The results of the iron uptake experiments suggest that iron uptake rates are independent of the cell quota of iron for M. aeruginosa and highly dependent on the cell quota for P. agardhii. A kinetic model under iron limitation was developed based on the growth characteristics determined in our study, and this model predicted accurately the algal population growth and iron consumption. The model simulation suggested that M. aeruginosa is a superior competitor under iron limitation. The differences in growth characteristics between the species would be important determinants of the dominance of these algal species.  相似文献   

4.
In experiments investigating nutrient effects on tropical Microcystis, increasing nitrogen and phosphorus concentrations were found to have a significant positive effect on maximum cell yields of two strains of Microcystis ichthyoblabe (from Lower Peirce and Tengeh Reservoirs) and one strain of Microcystis flos-aquae isolated (Lower Peirce Reservoir) from Singapore. However, only increasing nitrogen concentration had a positive effect on growth rates of M. ichthyoblabe and M. flos-aquae from Lower Peirce Reservoir. MC-RR and MC-LR were produced by all three strains with MC-RR being the dominant variant. Phosphorus played an important role in MC production with increases in phosphorus from medium to high concentrations leading to decreases in MC-RR cell quotas for all three strains at the two highest nitrogen levels tested. The different growth and toxin production responses between M. ichthyoblabe strains could be due to location-specific differences.  相似文献   

5.
Pseudomonas aeruginosa was isolated from infected burn patients and characterized by standard biochemical tests. The in vitro copper uptake was compared between this isolated pathogenic strain and two non-pathogenic control strains of Gram positive bacteria Bacillus thuringiensis strain Israelis as well as Gram negative bacteria Enterobacter aerogenes. Maximum copper uptake of 470 ppm/g biomass was obtained by P. aeruginosa strain, while the control strains B. thuringiensis and Enterobacter aerogenes had copper uptake of 350 and 383 ppm/g biomass, respectively. However, the lowest copper uptake (60 ppm/g biomass) was observed with another control the saprophytic strain Pseudomonas (Shewanella) putrefaciens. A further investigation regarding the effect of copper toxicity on bacterial growth, gave an MIC score of 600 ppm for P. aeruginosa strain compared to 460 and 300 ppm for the two Gram positive and Gram negative control strains, respectively. In tandem with these in vitro findings, blood analysis on burn patients infected with P. aeruginosa has indicated a selective decrease of copper (hypocupremia) and ceruloplasmin plasma levels. The iron metabolism was also affected by this copper deprivation leading to a similar decrease in plasma levels of PCV, iron, total iron binding capacity, and transferrin. All these hematological changes were significantly different (P < 0.05) from the matched group of non-infected burn patients. The observed hypocupremia in infected burn patients was attributed to demanding scavenger ability by P. aeruginosa strain for the copper of plasma.  相似文献   

6.
Nuisance growth of Myriophyllum aquaticum has often been attributed to high amounts of nutrients. The uptake of nitrogen and phosphorus from sediments and their allocation have been documented in both natural and laboratory populations. However, nutrient loading to surface water is increasingly becoming an important issue for water quality standards. Aquatic macrophytes that develop adventitious roots may be able to survive through the uptake of water column nutrients. Our objectives for this study were to assess M. aquaticum growth when combinations of nitrogen and phosphorus were added to the water column. Mesocosm experiments were conducted where nitrogen (1.8, 0.8, and 0.4 mg l−1; high, medium, and low) and phosphorus (0.09, 0.03, 0.01 mg l−1; high, medium, and low) concentrations were paired and added to the water column. After 12 weeks, the combination of 1.80:0.01 N:P resulted in greater (P < 0.01) total biomass and greater biomass for all plant tissues. Total biomass at the 1.80:0.01 N:P combination was 53% greater than biomass at all other combinations. The yield response of M. aquaticum was a quadratic function of tissue nutrient content. Yield was positively (r 2 = 0.82) related to increasing nitrogen content, whereas a negative (r 2 = 0.89) relationship was determined for increasing phosphorus content. We propose the negative relationship is due to increased nutrient competition and shading by algae resulting in reduced M. aquaticum growth. Tissue nutrient content indicated that critical concentrations (1.8% nitrogen and 0.2% phosphorus) for growth were not attained except for nitrogen in plants grown in the 1.80:0.01 N:P combination. These data provide further evidence that M. aquaticum requires high levels of nitrogen to achieve nuisance growth. Survival through uptake of water column nutrients may be a mechanism for survival during adverse conditions, a means of long distance dispersal of fragments, or may offer a competitive advantage over species that rely on sediment nutrients.  相似文献   

7.
A bacterium, which was observed in all cultivations of Microcystis sp., was isolated and designated as Rhodococcus sp. KWR2. The growth of bloom-forming cyanobacteria, including four strains of Microcystis aeruginosa and Anabaena variabilis, was suppressed by up to 75–88% by 2% (v/v) culture broth of KWR2 after 5 days. But KWR2 did not inhibit eukaryotic algae, Chlorella vulgaris and Scenedesmus sp. An extracellular algicidal substance produced by KWR2 showed a cyanobactericidal activity of 94% and was water-soluble with a molecular weight of lower than 8 kDa.  相似文献   

8.
Nodularia spumigena is one of the dominating species during the extensive cyanobacterial blooms in the Baltic Sea. The blooms coincide with strong light, stable stratification, low ratios of dissolved inorganic nitrogen, and dissolved inorganic phosphorus. The ability of nitrogen fixation, a high tolerance to phosphorus starvation, and different photo-protective strategies (production of mycosporine-like amino acids, MAAs) may give N. spumigena a competitive advantage over other phytoplankton during the blooms. To elucidate the interactive effects of ambient UV radiation and nutrient limitation on the performance of N. spumigena, an outdoor experiment was designed. Two radiation treatments photosynthetic active radiation (PAR) and PAR +UV-A + UV-B (PAB) and three nutrient treatments were established: nutrient replete (NP), nitrogen limited (−N), and phosphorus limited (−P). Variables measured were specific growth rate, heterocyst frequency, cell volume, cell concentrations of MAAs, photosynthetic pigments, particulate carbon (POC), particulate nitrogen (PON), and particulate phosphorus (POP). Ratios of particulate organic matter were calculated: POC/PON, POC/POP, and PON/POP. There was no interactive effect between radiation and nutrient limitation on the specific growth rate of N. spumigena, but there was an overall effect of phosphorus limitation on the variables measured. Interaction effects were observed for some variables; cell size (larger cells in −P PAB compared to other treatments) and the carotenoid canthaxanthin (highest concentration in −N PAR). In addition, significantly less POC and PON (mol cell−1) were found in −P PAR compared to −P PAB, and the opposite radiation effect was observed in −N. Our study shows that despite interactive effects on some of the variables studied, N. spumigena tolerate high ambient UVR also under nutrient limiting conditions and maintain positive growth rate even under severe phosphorus limitation.  相似文献   

9.
The effects of phosphorus supply on the outcome of interactions between the hemiparasitic angiosperm Rhinanthus minor L. with its host species Lolium perenne L. were investigated in a glasshouse experiment. Host plants were grown in 3-l pots in the presence and absence of R. minor at limiting (0.13 mm P) and optimal (0.65 mm P) concentrations of phosphorus for the growth of the host species. Phosphorus was supplied at 2-day intervals in the form of half-strength Long Ashton nitrate-based solution with phosphorus concentrations adjusted accordingly. Parasitism by R. minor significantly suppressed host growth, with final biomass losses ranging between 32% and 44%. Phosphorus supply had a marked impact on the outcome of the host-parasite interaction. By the end of the growing period, parasite biomass at 0.65 mm P was 90% lower than that achieved at 0.13 mm P. In contrast, host biomass at 0.65 mm P was 74% higher than achieved at 0.13 mm P, indicting that the negative impact of parasitism on the host species was reduced when phosphorus supply was increased. The effects of phosphorus on the host-parasite association appeared to be mediated by changes in both the morphological characteristics of the host roots and the relative sink strengths of the host and parasite. Received: 29 May 1999 / Accepted: 20 December 1999  相似文献   

10.
11.
Facilitation is an important process during succession. Legumes often play a significant role as facilitators, particularly in primary succession, enriching the soil with nitrogen (N). The leguminous shrub Lupinus arboreus (Sims) can fix significant N on acidic, nutrient-poor soils. An apparent association between L. arboreus and Urtica dioica (L), which requires high concentrations of soil N and phosphorus (P), suggested that L. arboreus might facilitate colonisation by Urtica of nutrient-poor soils by increasing both soil N and P. I measured significantly higher concentrations of extractable soil P and higher values of soil pH beneath L. arboreus canopy, compared with areas between bushes, occupied by herbaceous vegetation. Litter inputs beneath L. arboreus were more than two and a half times higher in terms of mass of material and P and three times higher in terms of N, than in areas between bushes. This high litter input accounted for the higher soil P concentration and higher pH. It did not lead to higher soil organic matter content however, probably because high nutrient concentration in L. arboreus litter leads to rapid decay. A glasshouse trial showed that Urtica grew poorly on soil collected from areas between bushes of L. arboreus without the addition of supplementary N and P fertiliser, indicting co-limitation, by both N and P. Growth of Urtica on soil from beneath L. arboreus was more than four times higher than on soil from between L. arboreus. Amendment of the latter soil with N significantly increased growth of Urtica, but amendment with P did not, indicating that Urtica growth on this soil was not P limited, even when amended with N. Facilitation of colonisation of this site by Urtica therefore can be attributed to increased soil N and P, derived from litter of L. arboreus. However, in the field Urtica was only found beneath dead and senescent L. arboreus, suggesting a period of inhibition caused by shading, before senescence of L. arboreus allows light penetration to the nutrient-rich soil below.  相似文献   

12.
The dynamics of planktonic cyanobacteria in eutrophicated freshwaters play an important role in formation of annual summer blooms, yet overwintering mechanisms of these water bloom forming cyanobacteria remain unknown. The responses to darkness and low temperature of three strains (unicellular Microcystis aeruginosa FACHB-905, colonial M. aeruginosa FACHB-938, and a green alga Scenedesmus quadricauda FACHB-45) were investigated in the present study. After a 30-day incubation under darkness and low temperature, cell morphology, cell numbers, chlorophyll a, photosynthetic activity (ETRmax and I k), and malodialdehyde (MDA) content exhibited significant changes in Scenedesmus. In contrast, Microcystis aeruginosa cells did not change markedly in morphology, chlorophyll a, photosynthetic activity, and MDA content. The stress caused by low temperature and darkness resulted in an increase of the antioxidative enzyme-catalase (CAT) in all three strains. When the three strains re-grew under routine cultivated condition subjected to darkness and low temperature, specific growth rate of Scenedesmus was lower than that of Microcystis. Flow cytometry (FCM) examination indicated that two distinct types of metabolic response to darkness and low temperature existed in the three strains. The results from the present study reveal that the cyanobacterium Microcystis, especially colonial Microcystis, has greater endurance and adaptation ability to the stress of darkness and low temperature than the green alga Scenedesmus. Handling editor: D. Hamilton  相似文献   

13.
The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.  相似文献   

14.
Improving natural regeneration of bamboos after they die following mass flowering is critical for conservation of giant pandas. However, little is known about factors that affect seed germination and seedling growth of bamboos. We studied seed germination and seedling growth in Fargesia qinlingensis, which mass flowered in a giant panda habitat in the Qinling Mountains of China in early 2000, in laboratory and greenhouse conditions. Seed germination rate was tested under light and dark conditions 5 and 12 months after seed collection. Germination rate displayed no significant difference under light or dark conditions 5 months after seed collection, but was significantly greater in the dark than under light 12 months after seed collection, suggesting light inhibition of seed germination. A 2×2 factorial design was conducted to test the effects of nitrogen (N fertilization and non-N fertilization) and light [full sun and shade (i.e., 14% full sun)] on seedling growth and biomass allocation. N fertilization significantly increased seedling growth, resulting in greater seedling height, more branches, more leaves, greater stem biomass, and greater leaf biomass. Seedlings under 14% full sun conditions had a significantly lower percentage of biomass allocated to the stem. The root/shoot ratio was significantly greater in non-N/shade than non-N/full sun, while there was no significant difference in this ratio between N/shade and N/full sun, suggesting that nitrogen fertilization compensated for the effect of shade on biomass allocation. Our results suggest that N fertilization could be employed in restoration of F. qinlingensis stands after die-off following mass flowering.  相似文献   

15.
While it is generally accepted that Propionibacterium acnes is involved in the development of acne, other bacteria including Staphylococcus epidermidis have also been isolated from the acne lesion. The interaction between Lactobacillus reuteri, a probiotic bacterium, and acnegenic bacteria is unclear. This study examined the effects of L. reuteri on the proliferation of P. acnes and S. epidermidis. Human-derived L. reuteri strains (KCTC 3594 and KCTC 3678) and rat-derived L. reuteri KCTC 3679 were used. All strains exhibited significant inhibitory effects on the growth of P. acnes and S. epidermidis. The proliferation of P. acnes was decreased by 2-log scales after incubation with L. reuteri for 24 h. In addition, the proliferation of S. epidermidis was decreased by 3-log scales after incubation with L. reuteri for 24 h, whereas the growth of L. reuteri was unaffected by P. acnes or S. epidermidis. Among the L. reuteri strains examined, L. reuteri KCTC 3679 had the strongest inhibitory effect on the growth of P. acnes and S. epidermidis, followed by L. reuteri KCTC 3594 and L. reuteri KCTC 3678. Interestingly, reuterin, an antimicrobial factor, was produced only by L. reuteri KCTC 3594. The most pronounced the antibacterial activities of L. reuteri were attributed to the production of organic acids. Overall, these results suggest that L. reuteri may be a useful probiotic agent to control the growth of bacteria involved in acne inflammation and prevent acne.  相似文献   

16.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

17.
Summary A heavy metal resistant bacterium, Bacillus circulans strain EB1 showed a high cadmium biosorption capacity coupled with a high tolerance to this metal when grown in its presence. Bacillus circulans EB1 cells grown in the presence of 28.1 mg cadmium/l were capable of removing cadmium with a specific biosorption capacity of 5.8 mg Cd/g dry wt biomass in the first 8 h. When the cells were pre-conditioned with low concentrations of cadmium in pre-grown medium, the uptake was increased to 6.7 mg Cd/g dry wt biomass. The maximum uptake of␣cadmium was during mid-logarithmic phase of growth. The resting cells (both wet and dry) of EB1 were also able to biosorb cadmium. Specific biosorption capacities of wet and dry biomass were 9.8 and 26.5 mg Cd/g dry wt biomass, respectively. Maximum cadmium removals by both wet and dry cells were at pH 7.0. The results showed that the cadmium removal capacity of resting cells was markedly higher than that of growing cells. Since both growing and resting cells had a high biosorption capacity for cadmium, EB1 cells could serve as an excellent biosorbent for removal of cadmium from natural environments.  相似文献   

18.
Electron probe X-ray microanalysis (XRMA) was used to determine the elemental composition of the blue-green alga, Microcystis aeruginosa, in a stratified freshwater lake during the late summer. Colonies of this alga were initially observed in mid-July, at a time when phosphorus concentration in the lake water had decreased to minimal levels (total P 0.04 mg l−1). The P quota of these cells was high (mean concentration 132 mmol kg−1 dry weight) with a cell P to lake water P concentration ratio of 105. The elemental concentrations of Microcystis remained relatively stable throughout the sampling period (July–September), with mean cell concentrations of Mg, P, S and Ca showing no significant changes. Mean elemental ratios and the ratio of monovalent/divalent cations were also relatively constant (SE <10% mean). The pattern of cell elemental associations, determined by Factor and Pearson correlation analysis, was consistent throughout – with Mg, P, K and S forming a core tetrad of inter-correlated elements. The relative constancy of cell composition seen in Microcystis would be expected of an alga with a K-selection strategy. The continued high P quota over a period of nutrient depletion in lake water is consistent with the ability of this alga to sink to nutrient-rich lower regions of the water column.  相似文献   

19.
Byrne K  Mitchell DT 《Mycorrhiza》2004,14(1):31-36
An investigation was carried out on the mycorrhizal colonisation, growth and nutrition of two members of the Ericaceae in close proximity to an arbuscular mycorrhizal (AM) association. This was undertaken by separating mycorrhizal (EM) and non-mycorrhizal (NEM) Erica cinerea and Vaccinium macrocarpon from AM (inoculated by Glomus mosseae) and non-mycorrhizal (NAM) Plantago lanceolata using a 30 µm nylon mesh in a sand culture/pot system. Ericoid mycorrhizal colonisation by Hymenoscyphus ericae on root systems of E. cinerea and V. macrocarpon was in the range 14–22% and 58–69%, respectively. The presence of AM P. lanceolata had no effect on the ericoid mycorrhizal colonisation of E. cinerea and V. macrocarpon. NEM E. cinerea showed reductions in shoot biomass and shoot nitrogen concentrations after exposure to AM P. lanceolata after incubations of 6 and 9 weeks but there were no differences in dry mass, length, and nitrogen and phosphorus concentrations of the root systems between the treatment combinations. Reductions were also found, after incubations of 6 and 9 weeks, in shoot dry mass, leaf area and shoot nitrogen concentrations of NEM V. macrocarpon in the presence of AM P. lanceolata but no changes occurred in the length and dry mass of the root systems. There were no differences in maximum photosynthesis in V. macrocarpon between treatment combinations but NEM V. macrocarpon in the presence of AM P. lanceolata had the lowest transpiration rates and stomatal conductance and the highest nitrogen- and phosphorus-use efficiencies compared with the other treatment combinations. These results are discussed in relation to the type of interaction found in these compatible and incompatible mycorrhizal associations.  相似文献   

20.
Toxic cyanobacterial blooms constitute a threat to human safety because Microcystis sp. releases microcystins during growth, and particularly during cell death. Therefore, analysis of toxic and nontoxic Microcystis in natural communities is required in order to assess and predict bloom dynamics and toxin production by these organisms. In this study, an analysis combining fluorescence in situ hybridization (FISH) with flow cytometry (FCM) was used to discriminate between toxic and nontoxic Microcystis and also to quantify the percentage of toxic Microcystis present in blooms. The results demonstrate that the combination of FISH and flow cytometry is a useful approach for studying the ecology of Microcystis toxin production and for providing an early warning for toxic Microcystis blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号