首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A new computer program, GlycoX, was developed to aid in the determination of the glycosylation sites and oligosaccharide heterogeneity in glycoproteins. After digestion with the nonspecific protease, each glycan at a specific glycosylation site contains a small peptide tag that identifies the location of the glycan. GlycoX was developed in MATLAB requiring the entry of the exact masses of the glycopeptide and the glycan spectra in the form of a mass-intensity table and taking advantage of the accurate mass capability of the mass analyzer, in this case a Fourier transform ion cyclotron resonance (FT ICR) mass spectrometer. This program computes not only the glycosylation site but also the composition of the glycans at each site. Several glycoproteins were used to determine the efficacy of GlycoX. These glycoproteins range from the simple, with one site of glycosylation, to the more complex, with multiple (three) sites of glycosylation. The results obtained using the computer program were the same as those determined manually. Model glycoproteins yielded the correct results, and new glycoproteins with unknown glycosylation were examined with the site of glycosylation and the corresponding glycans determined. Furthermore, other functions in GlycoX, including an auto-isotope filter to identify monoisotopic peaks and an oligosaccharide calculator to obtain the oligosaccharide composition, are demonstrated.  相似文献   

2.
Hui JP  White TC  Thibault P 《Glycobiology》2002,12(12):837-849
Mass spectrometric techniques combined with enzymatic digestions were applied to determine the glycosylation profiles of cellobiohydrolase (CBH II) and endoglucanases (EG I, II) purified from filamentous fungus Trichoderma reesei. Electrospray mass spectrometry (ESMS) analyses of the intact cellulases revealed the microheterogeneity in glycosylation where glycoforms were spaced by hexose units. These analyses indicated that glycosylation accounted for 12-24% of the molecular mass and that microheterogeneity in both N- and O-linked glycans was observed for each glycoprotein. The identification of N-linked attachment sites was carried out by MALDI-TOF and capillary liquid chromatography-ESMS analyses of tryptic digests from each purified cellulase component with and without PNGase F incubation. Potential tryptic glycopeptide candidates were first detected by stepped orifice-voltage scanning and the glycan structure and attachment site were confirmed by tandem mass spectrometry. For purified CBH II, 74% of glycans found on Asn310 were high mannose, predominantly Hex(7-9)GlcNAc(2), whereas the remaining amount was single GlcNAc; Asn289 had 18% single GlcNAc occupancy, and Asn14 remained unoccupied. EG I presented N-linked glycans at two out of the six potential sites. The Asn56 contained a single GlcNAc residue, and Asn182 showed primarily a high-mannose glycan Hex(8)GlcNAc(2) with only 8% being occupied with a single GlcNAc. Finally, EG II presented a single GlcNAc residue at Asn103. It is noteworthy that the presence of a single GlcNAc in all cellulase enzymes investigated and the variability in site occupancy suggest the secretion of an endogenous endo H enzyme in cultures of T. reesei.  相似文献   

3.
Extensive site-specific glycosylation analysis of individual glycoproteins is difficult due to the nature and complexity of glycosylation in proteins. In protein mixtures, these analyses are even more difficult. We present an approach combining nonspecific protease digestion, nanoflow liquid chromatography, and tandem mass spectrometry (MS/MS) aimed at comprehensive site-specific glycosylation analysis in protein mixtures. The strategy described herein involves the analysis of a complex mixture of glycopeptides generated from immobilized-Pronase digestion of a cocktail of glycoproteins consisting of bovine lactoferrin, kappa casein, and bovine fetuin using nanoflow liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (nano-LC-Q-TOF MS). The resulting glycopeptides were chromatographically separated on a micro fluidic chip packed with porous graphitized carbon and analyzed via MS and MS/MS analyses. In all, 233 glycopeptides (identified based on composition and including isomers) corresponding to 18 glycosites were observed and determined in a single mixture. The glycopeptides were a mixture of N-linked glycopeptides (containing high mannose, complex and hybrid glycans) and O-linked glycopeptides (mostly sialylated). Results from this study were comprehensive as detailed glycan microheterogeneity information was obtained. This approach presents a platform to simultaneously characterize N- and O-glycosites in the same mixture with extensive site heterogeneity.  相似文献   

4.
Ovomucin is a bioactive egg white glycoprotein responsible for the gel properties of fresh egg white and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin with molecular weight of 400-610?KDa and a carbohydrate-poor α-ovomucin with molecular mass of 254?KDa. In addition to limited information on O-linked glycans of ovomucin, there is no study on either the N-glycan structures or the N-glycosylation sites. The purpose of the present study was to characterize the N-glycosylation of ovomucin from fresh eggs using nano LC ESI-MS, MS/MS and MALDI MS. Our results showed the presence of N-linked glycans on both glycoproteins. We found 18 potential N-glycosylation sites in α-ovomucin. 15 sites were glycosylated, one site was found in both glycosylated and non-glycosylated forms and two potential glycosylation sites were found unoccupied. The N-glycans of α-ovomucin found on the glycosylation sites are complex-type structures with bisecting N-acetylglucosamine. MALDI MS of the N-glycans released from α-ovomucin by PNGase F revealed that the most abundant glycan structure is a bisected type of composition GlcNAc(6)Man(3). Two N-glycosylated sites were found in β-ovomucin.  相似文献   

5.
A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.  相似文献   

6.
Lysosomal alpha-mannosidase is a broad specificity exoglycosidase involved in the ordered degradation of glycoproteins. The bovine enzyme is used as an important model for understanding the inborn lysosomal storage disorder alpha-mannosidosis. This enzyme of about 1,000 amino acids consists of five peptide chains, namely a- to e-peptides and contains eight N-glycosylation sites. The N(497) glycosylation site of the c-peptide chain is evolutionary conserved among LAMANs and is very important for the maintenance of the lysosomal stability of the enzyme. In this work, relying on an approach based on mass spectrometric techniques in combination with exoglycosidase digestions and chemical derivatizations, we will report the detailed structures of the N-glycans and their distribution within six of the eight N-glycosylation sites of the bovine glycoprotein. The analysis of the PNGase F-released glycans from the bovine LAMAN revealed that the major structures fall into three classes, namely high-mannose-type (Fuc(0-1)Glc(0-1)Man(4-9)GlcNAc(2)), hybrid-type (Gal(0-1)Man(4-5)GlcNAc(4)), and complex-type (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(3-5)) N-glycans, with core fucosylation and bisecting GlcNAc. To investigate the exact structure of the N-glycans at each glycosylation site, the peptide chains of the bovine LAMAN were separated using SDS-PAGE and in-gel deglycosylation. These experiments revealed that the N(497) and N(930) sites, from the c- and e-peptides, contain only high-mannose-type glycans Glc(0-1)Man(5-9)GlcNAc(2), including the evolutionary conserved Glc(1)Man(9)GlcNAc(2) glycan, and Fuc(0-1)Man(3-5)GlcNAc(2), respectively. Therefore, to determine the microheterogeneity within the remaining glycosylation sites, the glycoprotein was reduced, carboxymethylated, and digested with trypsin. The tryptic fragments were then subjected to concanavalin A (Con A) affinity chromatography, and the material bound by Con A-Sepharose was purified using reverse-phase high-performance liquid chromatography (HPLC). The tandem mass spectrometry (ESI-MS/MS) and the MALDI analysis of the PNGase F-digested glycopeptides indicated that (1) N(692) and N(766) sites from the d-peptide chain both bear glycans consisting of high-mannose (Fuc(0-1)Man(3-7)GlcNAc(2)), hybrid (Fuc(0-1) Gal(0-1)Man(4-5)GlcNAc(4)), and complex (Fuc(0-1)Gal(0-2)Man(3)GlcNAc(4-5)) structures; and (2) the N(367) site, from the b-peptide chain, is glycosylated only with high-mannose structures (Fuc(0-1)Man(3-5)GlcNAc(2)). Taking into consideration the data obtained from the analysis of either the in-gel-released glycans from the abc- and c-peptides or the tryptic glycopeptide containing the N(367) site, the N(133) site, from the a-peptide, was shown to be glycosylated with truncated and high-mannose-type (Fuc(0-1)Man(4-5)GlcNAc(2)), complex-type (Fuc(0-1)Gal(0-1)Man(3)GlcNAc(5)), and hybrid-type (Fuc(0-1)Gal(0-1)Man(5)GlcNAc(4)) glycans.  相似文献   

7.
Glycoproteins play important roles in various biological processes including intracellular transport, cell recognition, and cell-cell interactions. The change of the cellular glycosylation profile may have profound effects on cellular homeostasis and malignancy. Therefore, we have developed a sensitive screening approach for the comprehensive analysis of N-glycans and glycosylation sites on human serum proteins. Using this approach, N-linked glycopeptides were extracted by double lectin affinity chromatography. The glycans were enzymatically cleaved from the peptides and then profiled using capillary hydrophilic interaction liquid chromatography coupled online with ESI-TOF MS. The structures of the separated glycans were determined by MALDI quadrupole ion-trap TOF mass spectrometry in both positive and negative modes. The glycosylation sites were elucidated by sequencing of PNGase F modified glycopeptides using nanoRP-LC-ESI-MS/MS. Alterations of glycosylation were analyzed by comparing oligosaccharide expression of serum glycoproteins at different disease stages. The efficiency of this method was demonstrated by the analysis of pancreatic cancer serum compared to normal serum. Ninety-two individual glycosylation sites and 202 glycan peaks with 105 unique carbohydrate structures were identified from approximately 25 mug glycopeptides. Forty-four oligosaccharides were found to be distinct in the pancreatic cancer serum. Increased branching of N-linked oligosaccharides and increased fucosylation and sialylation were observed in samples from patients with pancreatic cancer. The methodology described in this study may elucidate novel, cancer-specific oligosaccharides and glycosylation sites, some of which may have utility as useful biomarkers of cancer.  相似文献   

8.
The oligosaccharide structures of the structural subunit HtH1 of Haliotis tuberculata hemocyanin (HtH) were studied by mass spectral sequence analysis of the glycans. The proposed structures are based on MALDI-TOF-MS data before and after treatment with the specific exoglycosidases β1-3,4,6-galactosidase and α1-6(>2,3,4) fucosidase followed by sequence analysis via electrospray ionization MS/MS-spectra. In total, 15 glycans were identified as a highly heterogeneous group of structures. As in most molluscan hemocyanins, the glycans of HtH1 contain a terminal MeHex, but more interestingly, a novel structural motif was observed: MeHex[Fuc(α1-3)-]GlcNAc, including thus MeHex and (α1-3)-Fuc residues being linked to an internal GlcNAc residue. While the functional unit (FU) c (HtH1-c) is completely lacking any potential glycosylation site, FU-h possesses a second exposed sugar attachment site between beta-strands 8 and 9 within the beta sandwich domain compared to the other FUs. The glycosylation pattern/sites show a high degree of conservation. In FU-h two prominent potential glycosylation sites can be detected. The finding that HtH1 is not able to form multidecameric structures in vivo could be explained by the presence of the exposed glycan on the surface of FU-h.  相似文献   

9.
Protein post-translational modifications (PTMs), such as glycosylation and phosphorylation, are crucial for various signaling and regulatory events, and are therefore an important objective of proteomics research. We describe here a protocol for isotope-coded glycosylation site-specific tagging (IGOT), a method for the large-scale identification of N-linked glycoproteins from complex biological samples. The steps of this approach are: (1) lectin column-mediated affinity capture of glycopeptides generated by protease digestion of protein mixtures; (2) purification of the enriched glycopeptides by hydrophilic interaction chromatography (HIC); (3) peptide-N-glycanase-mediated incorporation of a stable isotope tag, 18O18O, specifically at the N-glycosylation site; and (4) identification of 18O-tagged peptides by liquid chromatography-coupled mass spectrometry (LC/MS)-based proteomics technology. The application of this protocol to the characterization of N-linked glycoproteins from crude extracts of the nematode Caenorhabditis elegans or mouse liver provides a list of hundreds to a thousand glycoproteins and their sites of glycosylation within a week.  相似文献   

10.
We report a detailed structural analysis of the N-glycans of Caenorhabditis elegans recognized by C. elegans galectin LEC-6. Glycoproteins of C. elegans captured by an immobilized LEC-6 affinity adsorbent were isolated. The N-glycans of these glycoproteins were then liberated by hydrazinolysis and labeled with the fluorophore 2-aminopyridine (PA). The derived pyridylaminated (PA)-sugars were further fractionated by rechromatography on immobilized LEC-6 adsorbent and by reversed-phase high-performance liquid chromatography (HPLC). The structures of the PA-sugars thus obtained were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS/MS) in conjunction with glycosidase digestion. We confirmed that all PA-sugars having affinity for LEC-6 contain a Gal-Fuc disaccharide unit, and that this unit is bound to the innermost GlcNAc residue of the N-glycan chain. The dissociation constants of LEC-6 for these glycans were measured by frontal affinity chromatography. LEC-6 exhibited higher affinity for oligosaccharides having a Gal-Fuc unit linked to position 6 of the innermost GlcNAc residue than for those having Galbeta1-4GlcNAc units. Affinity for the former disappeared, however, following treatment with beta-galactosidase. If the glycan contained a Hex-Fuc disaccharide linked to the penultimate GlcNAc residue, the affinity would be diminished. We propose, therefore, that the galectins of C. elegans utilize the Gal-Fuc disaccharide unit for recognition instead of the Gal-GlcNAc unit that is common in vertebrates.  相似文献   

11.
Liu X  Chan K  Chu IK  Li J 《Carbohydrate research》2008,343(17):2870-2877
Nonspecific proteolytic digestion of glycoproteins is an established technique in glycomics and glycoproteomics. In the presence of pronase E, for example, glycoproteins are digested to small glycopeptides having one to six amino acids residues, which can be analyzed with excellent sensitivity using mass spectrometry. Unfortunately, the long digestion times (1-3 days) limit the analytical throughput. In this study, we used controlled microwave irradiation to accelerate the proteolytic cleavage of glycoproteins mediated by pronase E. We used ESI-MS and MALDI-MS analyses to evaluate the microwave-assisted enzymatic digestions at various digestion durations, temperatures, and enzyme-to-protein ratios. When digesting glycoproteins, pronase E produced glycopeptides within 5 min under microwave irradiation; glycopeptides having one or two amino acids were the major products. Although analysis of peptides containing multiple amino acid residues offers the opportunity for peptide sequencing and provides information regarding the sites of glycosylation, the signals of Asn-linked glycans were often suppressed by the glycopeptides containing basic amino acids (Lys or Arg) in MALDI-MS experiments. To minimize this signal-to-content dependence, we converted the glycopeptides into their sodiated forms and then methylated them using methyl iodide. This controlled methylation procedure resulted in quaternization of the amino group of the N-terminal amino acid residue. Using this approach, the mass spectrometric response of glyco-Asn was enhanced, compensating for the poorer ionization efficiency associated with the basic amino acids residues. The methylated products of glycopeptides containing two or more amino acid residues were more stable than those containing only a single Asn residue. This feature can be used to elucidate glycan structures and glycosylation sites without the need for MS/MS analysis.  相似文献   

12.
In the last few years mass spectrometry has become the method of choice for characterization of post-translationally modified proteins. Whereas most protein chemical modifications are binary in the sense that only one change can be associated with a given residue, many different oligosaccharides can be attached to a glycosylation site residue. The detailed characterization of glycoproteins in complex biological samples is extremely challenging. However, information on N-glycosylation can be gained at an intermediary level. Here we demonstrate a procedure for mapping N-glycosylation sites in complex mixtures by reducing sample complexity and enriching glycoprotein content. Glycosylated proteins are selected by an initial lectin chromatography step and digested with endoproteinase Lys-C. Glycosylated peptides are then selected from the digest mixture by a second lectin chromatography step. The glycan components are removed with N-glycosidase F and the peptides digested with trypsin before analysis by on-line reversed-phase liquid chromatography mass spectrometry. Using two different lectins, concanavalin A and wheat germ agglutinin, this procedure was applied to human serum and a total of 86 N-glycosylation sites in 77 proteins were identified.  相似文献   

13.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of a beta1,6-linked GlcNAc to the alpha1,6 mannose of the trimannosyl core to form tri- and tetraantennary N-glycans and contains six putative N-linked sites. We used mass spectrometry techniques combined with exoglycosidase digestions of recombinant human GnT-V expressed in CHO cells, to identify its N-glycan structures and their sites of expression. Release of N-glycans by PNGase F treatment, followed by analysis of the permethylated glycans using MALDI-TOF MS, indicated a range of complex glycans from bi- to tetraantennary species. Mapping of the glycosylation sites was performed by enriching for trypsin-digested glycopeptides, followed by analysis of each fraction with Q-TOF MS. Predicted tryptic glycopeptides were identified by comparisons of theoretical masses of peptides with various glycan masses to the masses of the glycopeptides determined experimentally. Of the three putative glycosylation sites in the catalytic region, peptides containing sites Asn 334, 433, and 447 were identified as being N-glycosylated. Asn 334 is glycosylated with only a biantennary structure with one or two terminating sialic acids. Sites Asn 433 and 447 both contain structures that range from biantennary with two sialic acids to tetraantennary terminating with four sialic acids. The predominant glycan species found on both of these sites is a triantennary with three sialic acids. The appearance of only biantennary glycans at site Asn 433, coupled with the appearance of more highly branched structures at Asn 334 and 447, demonstrates that biantennary acceptors present at different sites on the same protein during biosynthesis can differ in their accessibility for branching by GnT-V.  相似文献   

14.
The main objective of this study was to characterize the N-linked glycosylation profiles of recombinant hemagglutinin (HA) proteins expressed in either insect or plant hosts, and to develop a mass spectrometry based workflow that can be used in quality control to assess batch-to-batch reproducibility for recombinant HA glycosylation. HA is a surface glycoprotein of the influenza virus that plays a key role in viral infectivity and pathogenesis. Characterization of the glycans for plant recombinant HA from the viral strain A/California/04/09 (H1N1) has not yet been reported. In this study, N-linked glycosylation patterns of the recombinant HAs from both insect and plant hosts were characterized by precursor ion scan-driven data-dependent analysis followed by high-resolution MS/MS analysis of the deglycosylated tryptic peptides. Five glycosylation sites (N11, N23, N276, N287, and N481) were identified containing high mannose type glycans in plant-expressed HAs, and complex type glycoforms for the insect-expressed HA. More than 95% site occupancy was observed for all glycosylation sites except N11, which was 60% occupied. Multiple-reaction monitoring based quantitation analysis was developed for each glycopeptide isoform and the quantitative results indicate that the Man(8) GlcNAc(2) is the dominant glycan for all sites in plant-expressed HAs. The relative abundance of the glycoforms at each specific glycosylation site and the relative quantitation for each glycoform among three HAs were determined. Few differences in the glycosylation profiles were detected between the two batches of plant HAs studied, but there were significant differences between the glycosylation patterns in the HAs generated in plant and insect expression hosts.  相似文献   

15.
High-performance liquid chromatography with electrospray ionization mass spectrometry (LC/MS) and liquid chromatography with tandem mass spectrometry (LC/MS/MS) were applied to the analysis of the site-specific carbohydrate heterogeneity in erythropoietin (EPO) used as a model of the sialylated glycoprotein. N-linked oligosaccharides were released from recombinant human EPO expressed in Chinese hamster ovary cells enzymatically and reduced with NaBH(4). Many different sialylated oligosaccharides of EPO were separated and characterized by LC/MS equipped with a graphitized carbon column (GCC). Glycosylation sites and the preliminary glycosylation pattern at each glycosylation site were determined by LC/MS of endoproteinase Glu-C-digested EPO. The detailed site-specific carbohydrate heterogeneity caused by the differences in the molecular weight, branch, linkage, and sequence was elucidated by GCC-LC/MS of the N-linked oligosaccharides released from the isolated glycopeptides. Structural details of the isomers were analyzed by LC/MS/MS, and it was indicated that di- and trisialylated tetraantennary oligosaccharides are attached to Asn24, 38, and 83, whereas their isomers, di- and trisialylated triantennary oligosaccharides containing N-acetyllactosamines, are combined with Asn24. Our method is useful for the determination of glycosylation sites, the site-specific carbohydrate heterogeneity of glycoproteins, and the carbohydrate structure.  相似文献   

16.
Cyclooxygenase is involved in the biosynthesis and function of prostaglandins. It is a glycoprotein located in the endoplasmic reticulum and in the nuclear envelope, and it has been found to have two isoforms termed COX-1 and COX-2. This paper reports on the glycosylation site analysis of recombinant COX-2 using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) and nanoelectrospray (nanoESI) quadrupole-TOF (Q-TOF) MS. The nanoESI MS analysis of COX-2 revealed the presence of three glycoforms at average molecular masses of 71.4, 72.7, and 73.9 kDa. Each glycoform contained a number of peaks differing by 162 Da indicating heterogeneity and suggesting the presence of high-mannose sugars. The masses of the glycoforms indicate that oligosaccharides occupy two to four sites and a single N-acetylglucosamine (GlcNAc) residue occupied up to two sites. The MALDI MS analysis of a tryptic digest of the protein showed a number of potential glycopeptides. The peptides differed by 162 Da which further suggested high-mannose sugars. Nanoelectrospray MS/MS experiments confirmed glycosylation at the Asn 53 and Asn 130 sites and confirmed the presence of the peptides Asn 396-Arg 414 + GlcNAc and Thr 576-Arg 587 + GlcNAc containing Asn 580. It was not possible to conclusively determine whether the Asn 396 site was glycosylated via an MS/MS experiment, so the tryptic digest was deglycosylated to confirm the presence of the glycopeptides. Finally, a non-glycosylated tryptic peptide was observed containing the Asn 592.  相似文献   

17.
Glycopeptides representing each individual N-glycosylation site in six animal and plant glycoproteins (ovoinhibitor and ovotransferrin, orosomucoid, antitrypsin, phaseolin, and phytohemagglutinin) have been isolated and compared by mass spectrometric analysis. Since the isolation step separates each individual peptide regardless of the nature of the glycan attached to it, it is possible to observe the entire spectrum of glycans associated with each site from the mass spectrum of the corresponding glycopeptide. The three glycosylation sites in ovoinhibitor have very similar but not identical glycans; they are significantly different from those observed in the single site of ovotransferrin. The three sites in serum antitrypsin also have quite similar glycans, whereas the five sites in orosomucoid show considerable variation in both the nature and the relative amount of glycans. The two plant glycoproteins each have two sites with very different glycan structures. Except for the first and third glycosylation sites of antitrypsin which were found to have remarkably homogeneous glycans (97 and 90% of a biantennary complex structure), all the individual glycosylation sites contained heterogeneous mixtures of glycan structures. The results support the proposition that each N-linked glycan in a glycoprotein is affected by its unique protein environment to such an extent that each one may be displayed to the processing enzymes as a unique structural entity. On the basis of a limited number of observations of the glycan interfering with chymotryptic but not tryptic cleavage in the proximity of the glycan attachment site, it is proposed that hydrophobic interactions between the protein and the glycan may be involved in the conformational modulation of the glycans.  相似文献   

18.
Simultaneous elucidation of the glycan structure and the glycosylation site are needed to reveal the biological function of protein glycosylation. In this study, we employed a recent type of fragmentation termed higher energy collisional dissociation (HCD) to examine fragmentation patterns of intact glycopeptides generated from a mixture of standard glycosylated proteins. The normalized collisional energy (NCE) value for HCD was varied from 30 to 60% to evaluate the optimal conditions for the fragmentation of peptide backbones and glycoconjugates. Our results indicated that HCD with lower NCE values preferentially fragmented the sugar chains attached to the peptides to generate a ladder of neutral loss of monosaccharides, thereby enabling the putative glycan structure characterization. In addition, detection of the oxonium ions enabled unambiguous differentiation of glycopeptides from non-glycopeptides. In contrast, HCD with higher NCE values preferentially fragmented the peptide backbone and, thus, provided information needed for confident peptide identification. We evaluated the HCD approach with alternating NCE parameters for confident characterization of intact N- and O-linked glycopeptides in a single liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis. In addition, we applied a novel data analysis pipeline, so-called GlycoFinder, to form a basis for automated data analysis. Overall, 38 unique intact glycopeptides corresponding to eight glycosylation sites (six N-linked and two O-linked sites) were confidently identified from a standard protein mixture. This approach provided concurrent characterization of both the peptide and the glycan, thereby enabling comprehensive structural characterization of glycoproteins in a single LC–MS/MS analysis.  相似文献   

19.
Using the avidin-biotinyl glycan system reported previously (Shao, M.-C., and Wold, F. (1987) J. Biol. Chem. 267, 2968-2972), we have compared the processing efficiency of oviduct enzymes acting on different glycan-(biotinyl)Asn and glycan-(6-biotinamidohexanoyl)Asn derivatives when they are free and bound to avidin. The glycans were selected to permit exploration of the individual processing steps, and the two different groups of derivatives were used to assess both the close (biotinyl) and more distal (biotinamidohexanoyl) display of the glycan relative to the avidin surface. The direct comparison of the free and avidin-bound glycans demonstrated that mannosidase I is strongly inhibited by avidin in both the close and distal complexes, whereas GlcNAc transferase I and mannosidase II are strongly inhibited only in the close complex. GlcNAc transferases III, IV, and V, which could only be assessed individually by indirect means using different substrates, did not appear to be affected in any major way by the protein matrix; the data suggest that transferase III is inhibited only to a minor extent in the close complex. Gal transferase activity showed a minor effect of the avidin matrix for both complexes in the hybrid processing pathways. The most significant consequence of the avidin effect on Gal transferase was the apparent abolishment of the incorporation of a 2nd Gal residue in the two avidin complexes. This survey of the protein matrix effects on glycan processing by oviduct enzymes appears to provide reasonable clues to the origin of the very different glycan structures observed in oviduct-processed glycoproteins. Thus, ovalbumin and avidin itself, containing a mixture of oligomannose and hybrid glycans at their single glycosylation sites, may well present they glycans to the processing enzymes in a display very similar to that of the avidin close complex observed here. The inhibition of mannosidase I and GlcNAc transferase I lead to preservation of oligomannose structures, whereas the strong inhibition of mannosidase II favors the incorporation of the bisecting GlcNAc by GlcNAc transferase III to yield hybrid structures as the most processed products. Ovomucoid, which contains multiantennary complex structures at all glycosylation sites, may on the other hand display its glycans, unencumbered by the protein surface, in conformations similar to either the free glycans or the distal complexes observed in this work.  相似文献   

20.
Glycans play major roles in living organisms. Thus, essential information is required on diverse glycans, their location, and moieties in proteins, as well as for technology in a high-throughput manner, for improving functional glycomics. In the present study, we describe a new approach involving a 2-D array, which has the potential to fulfill both requirements. The first dimension of the array is composed of various lectins immobilized to a MALDI plate. The second dimension consists of initial proteolysis, then sequential exoglycosidase digestion using highly specific enzymes. The products of such digestions are peptide/glycopeptide mixtures conjugating different glycan fragments from which the exoglycosidase has removed specific terminal residues. Consequently, a series of spectra are obtained when lectin-attached products are analyzed by MALDI-TOF MS. By using well-known glycoproteins and NKp46D2-Ig, a recombinant fusion natural killer receptor with unknown glycans produced in CHO cells, we proved the usefulness of the method, demonstrating rapid and simultaneous determination of N- and O-glycan sequences, their glycan moieties, and subtypes on each of the determined glycosylation sites. This strategy provides a tool that can rapidly explore glycan structures and might contribute to a better understanding of process- and disease-related glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号