首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Janus tyrosine kinase 2 (JAK2) is essential for signaling by the thrombopoietin (TpoR) and erythropoietin (EpoR) receptors. In the absence of JAK2 most EpoR molecules are retained in the endoplasmic reticulum in an Endo H-sensitive form. In contrast, we show that in the absence of JAK2 a large fraction of the TpoR is processed to the mature Endo H-resistant form and reaches the cell surface. By studying chimeras of the TpoR and EpoR we show that high surface expression of the TpoR is entirely conferred by the membrane-proximal region of the intracellular domain that includes the juxtamembrane, Box 1, and Box 2 regions. The TpoR intracellular domain shows similar effects on receptor endocytosis rate as that of the EpoR, but does stabilize the mature receptor isoform from degradation. Co-expression of JAK2 further stabilizes mature TpoR and thus further increases its surface expression. This JAK2 effect depends on the Box 1 region, the only JAK2 interacting site in the TpoR. By contrast, EpoR requires Box 1 as well as the flanking 20 residues on the C-terminal side for JAK2 interaction and JAK2-dependent surface expression. Our study suggests that whereas cell surface expression of type I cytokine receptors requires their cognate JAKs, the mechanisms governing receptor-JAK interactions differ among receptors interacting with the same JAK protein.  相似文献   

2.
3.
The human interleukin-3 receptor (hIL-3R) consists of a unique alpha subunit (hIL-3Ralpha) and a common beta subunit (betac). Binding of IL-3 to IL-3R activates Janus kinases JAK1 and JAK2. Our previously study showed that JAK2 and JAK1 were constitutively associated with the hIL-3Ralpha and betac subunits, respectively. In this study, we further demonstrate that JAK2 binds to the intracellular domain of hIL-3Ralpha and JAK1 binds to the Box 1 and Box 2 motifs of betac using GST-hIL-3R fusion proteins in pull-down assays. JAK1 mutational analysis revealed that its JH7-3 domains bound directly to the Box 1 and Box 2 motifs of betac. We further examined the role of JAK1 JH7-3 domains in JAK1 and JAK2-mediated signaling using the CDJAKs fusion proteins, which consisted of a CD16 extracellular domain, a CD7 transmembrane domain, and either JAK1 (CDJAK1), JAK2 (CDJAK2), or JAK1-JH7-3 domains (CDJAK1-JH7-3) as intracellular domains. Anti-CD16 antibody crosslinking of wild type fusion proteins CDJAK1 with CDJAK2 could mimic IL-3 signaling, however, the crosslinking of fusion proteins CDJAK1-JH7-3 with CDJAK2 failed to activate downstream proteins. These results suggest that the JAK1-JH7-3 domains are required for betac interaction and abolish wild type JAK1 and JAK2-mediated signaling.  相似文献   

4.
The majority of polycythemia vera (PV) patients harbor a unique somatic mutation (V617F) in the pseudokinase domain of JAK2, which leads to constitutive signaling. Here we show that the homologous mutations in JAK1 (V658F) and in Tyk2 (V678F) lead to constitutive activation of these kinases. Their expression induces autonomous growth of cytokine-dependent cells and constitutive activation of STAT5, STAT3, mitogen-activated protein kinase, and Akt signaling in Ba/F3 cells. The mutant JAKs exhibit constitutive signaling also when expressed in fibrosarcoma cells deficient in JAK proteins. Expression of the JAK2 V617F mutant renders Ba/F3 cells hypersensitive to insulin-like growth factor 1 (IGF1), which is a hallmark of PV erythroid progenitors. Upon selection of Ba/F3 cells for autonomous growth induced by the JAK2 V617F mutant, cells respond to IGF1 by activating STAT5, STAT3, Erk1/2, and Akt on top of the constitutive activation characteristic of autonomous cells. The synergic effect on proliferation and STAT activation appears specific to the JAK2 V617F mutant. Our results show that the homologous V617F mutation induces activation of JAK1 and Tyk2, suggesting a common mechanism of activation for the JAK1, JAK2, and Tyk2 mutants. JAK3 is not activated by the homologous mutation M592F, despite the presence of the conserved GVC preceding sequence. We suggest that mutations in the JAK1 and Tyk2 genes may be identified as initial molecular defects in human cancers and autoimmune diseases.  相似文献   

5.
6.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

7.
8.
Kinases of the Jak family (Jak1/2/3 and Tyk2) interact with the membrane proximal domain of different cytokine receptors and play a critical role in the activation of cytokine and growth factor signaling pathways. In this report we demonstrate that both the Box 1 and Box 2 motif collaborate in the association and activation of Jak1 by type I interferons. Mutational analysis of the beta chain of type I interferon receptor (IFNalphaRbetaL/IFNAR2) revealed that Box 1 plays a more significant role in activation than in the association with Jak1. On the contrary, the Box 2 motif contributes more to the association with Jak1 than to kinase activation. Additionally, the study of the Jak1 binding sites on the IL2 receptor beta (IL2Rbeta), IFNgammaRalpha/IFNGR1, and IL10Ralpha/IL10R1 chains suggests that cytokine receptors have two different kinds of interaction with Jak1. One form of interaction involves the Box 1 and the previously described Box 2 motif, which we now designate as Box 2A, characterized by the VEVI and LEVL sequences present in IFNalphaRbetaL/IFNAR2 and IL2Rbeta subunits, respectively. The second form of interaction requires a motif termed Box 2B, which is present in the IFNgammaRalpha/IFNGR1 (SILLPKS) and IL10Ralpha/IL10R1 (SVLLFKK) chains. Interestingly, Box 2B localizes close to the membrane region (8-10 amino acids from the membrane) similar to Box 1, whereas Box 2A is more distal (38-58 amino acids from the membrane).  相似文献   

9.
Tyrosine kinase 2 (Tyk2), a member of JAK signal transducer family contributes to the signals triggered by IL-12 for IFN-gamma production. To elucidate potential roles of Tyk2 in generation and maintenance of Ag-specific CD8+ T cells, we followed the fate of OVA-specific CD8+ T cells in Tyk2-deficient (-/-) mice after infection with recombinant Listeria monocytogenes expressing OVA (rLM-OVA). Results showed that the numbers of OVA(257-264)/K(b) tetramer-positive CD8+ T cells in Tyk2(-/-) mice were almost the same as those in Tyk2(+/+) mice at the expansion phase on day 7 but were significantly larger in Tyk2(-/-) mice than those in Tyk2(+/+) mice at the contraction phase on day 10 and at the memory phase on day 60 after infection. The intracellular expression level of active caspase-3 was significantly decreased in the OVA-specific CD8+ T cells of Tyk2(-/-) mice on day 7 compared with those of Tyk2(+/+) mice. Adaptive transfer experiments revealed that Tyk2 signaling in other factors rather than CD8+ T cells played a regulatory role in CD8+ T cell contraction following infection. Administration of exogenous IFN-gamma from day 6 to day 9 restored the CD8+ T cell contraction in Tyk2(-/-) mice after infection with rLM-OVA. These results suggest that Tyk2 signaling for IFN-gamma production in host environment plays an important role in contraction of effector CD8+ T cells following a microbial infection.  相似文献   

10.
The granulocyte colony-stimulating factor receptor (G-CSFR) regulates the proliferation, differentiation and survival of neutrophilic progenitor cells. In these studies, we introduced mutant G-CSFRs with cytoplasmic domains truncated approximately every 30 amino acids from the C-terminus into interleukin-3 (IL-3)-dependent myeloid LGM-1 cells. The G-CSFR membrane proximal region containing the Box 2 homology sequence was determined to be critical for proliferative signaling, as well as for activation of Janus kinase (JAK2) and p44/42 mitogen-activated protein kinase (MAPK) following G-CSF stimulation. In the presence of increasing concentrations of JAK2 or p44/42 MAPK inhibitors, LGM-1 cells expressing the full-length G-CSFR exhibited a decreased capacity to proliferate in response to G-CSF. These results demonstrate that JAK2 and p44/42 MAPK activation is involved in proliferative signaling through the G-CSFR membrane proximal region containing the Box 2 homology sequence.  相似文献   

11.
GH signaling depends on functional interaction of the GH receptor (GHR) and the cytoplasmic tyrosine kinase, Janus kinase 2 (JAK2), which possesses a C-terminal kinase domain, a catalytically inactive pseudokinase domain just N-terminal to the kinase domain, and an N-terminal half shown by us and others to harbor elements for GHR association. Computational analyses indicate that JAKs contain in their N termini ( approximately 450 residues) divergent FERM domains. FERM domains (or subdomains within them) in JAKS may be important for associations with cytokine receptors. For some cytokine receptors, JAK interaction may be required for receptor surface expression. We previously demonstrated that a JAK2 mutant devoid of its N-terminal 239 residues (JAK2-Delta1-239) did not associate with GHR and could not mediate GH- induced signaling. In this report we employ a JAK2-deficient cell line to further define N-terminal JAK2 regions required for physical and functional association with the GHR. We also examine whether JAK2 expression affects cell surface expression of the GHR. Our results suggest that FERM motifs play an important role in the interaction of GHR and JAK2. While JAK2 expression is not required for detectable surface GHR expression, an increased JAK2 level increases the fraction of GHRs that achieves resistance to deglycosylation by endoglycosidase H, suggesting that the GHR-JAK2 association may enhance either the receptor's efficiency of maturation or its stability. Further, we report evidence for the existence of a novel GH-inducible functional interaction between JAK2 molecules that may be important in the mechanism of GH-triggered JAK2 signaling.  相似文献   

12.
13.
14.
Determinants of growth hormone receptor down-regulation   总被引:1,自引:0,他引:1  
GH receptor (GHR) is a cytokine receptor family member that responds to GH by activation of the receptor-associated tyrosine kinase, JAK2 (Janus family of tyrosine kinase 2). We previously showed that JAK2, in addition to being a signal transducer, dramatically increases the half-life of mature GHR, partly by preventing constitutive GHR down-regulation. Herein we explored GHR and JAK2 determinants for both constitutive and GH-induced GHR down-regulation, exploiting the previously characterized GHR- and JAK2-deficient gamma2A reconstitution system. We found that JAK2's ability to protect mature GHR from rapid degradation measured in the presence of the protein synthesis inhibitor, cycloheximide, depended on the presence of GHR's Box 1 element and the intact JAK2 FERM (band 4.1/Ezrin/Radixin/Moesin); domain, but not the kinase-like or kinase domains of JAK2. Thus, GHR-JAK2 association, but not JAK2 kinase activity, is required for JAK2 to inhibit constitutive GHR down-regulation and enhance GHR half-life. In cells that expressed JAK2, but not cells lacking JAK2, GH markedly enhanced GHR degradation. Like JAK2-induced protection from constitutive down-regulation, GH-induced GHR down-regulation required the GHR Box 1 element and an intact JAK2 FERM domain. However, a JAK2 mutant lacking the kinase-like and kinase domains did not mediate GH-induced GHR down-regulation. Likewise, a kinase-deficient JAK2 was insufficient for this purpose, indicating that kinase activity is required. Both lactacystin (a proteasome inhibitor) and chloroquine (a lysosome inhibitor) blocked GH-induced GHR loss. Interestingly, GH-induced GHR ubiquitination, like down-regulation, was prevented in cells expressing a kinase-deficient JAK2 protein. Further, a GHR mutant, of which all the cytoplasmic tyrosine residues were changed to phenylalanines, was resistant to GH-induced GHR ubiquitination and down-regulation. Collectively, our data suggest that determinants required for JAK2 to protect mature GHR from constitutive degradation differ from those that drive GH-induced GHR down-regulation. The latter requires GH-induced JAK2 activation and GHR tyrosine phosphorylation and is correlated to GHR ubiquitination in our reconstitution system.  相似文献   

15.
16.
Tyk2 is a Jak family member involved in cytokine signaling through heterodimeric-type receptors. Here, we analyzed the impact of the Val(678)-to-Phe substitution on Tyk2 functioning. This mutation is homologous to the Jak2 Val(617)-to-Phe mutation, implicated in myeloproliferative disorders. We studied ligand-independent and ligand-dependent Jak/Stat signaling in cells expressing Tyk2 V678F. Moreover, the effect of Tyk2 V678F was monitored in the context of the native heterodimeric interferon alpha receptor and in the context of a homodimeric receptor chimera, EpoR/R1, containing the ectodomain of the erythropoietin receptor. We show that Tyk2 V678F has increased catalytic potential in vivo and in vitro and more so when it is anchored to the homodimeric receptor. Tyk2 V678F leads to constitutive Stat3 phosphorylation but has no notable effect on the canonical interferon alpha-induced signaling. However, if anchored to the homodimeric EpoR/R1, the mutant confers to the cell increased sensitivity to erythropoietin. Thus, despite the catalytic gain of function of Tyk2 V678F, the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor.  相似文献   

17.
Protein tyrosine kinase plays a central role in the proliferation and differentiation of various types of cells. One of these protein kinases, Tyk2, a member of the Jak family kinases, is known to play important roles in receptor signal transduction by interferons, interleukins, growth factors, and other hormones. In the present study, we investigated Tyk2 expression and its role in the growth and invasiveness of human prostate cancer cells. We used a small interfering RNA targeting Tyk2 and an inhibitor of Tyk2, tyrphostin A1, to suppress the expression and signaling of Tyk2 in prostate cancer cells. We detected mRNAs for Jak family kinases in prostate cancer cell lines by RT-PCR and Tyk2 protein in human prostate cancer specimens by immunohistochemistry. Inhibition of Tyk2 signaling resulted in attenuation of the urokinase-type plasminogen activator-enhanced invasiveness of prostate cancer cells in vitro without affecting the cellular growth rate. These results suggest that Tyk2 signaling in prostate cancer cells facilitate invasion of these cells, and interference with this signaling may be a potential therapeutic pathway.  相似文献   

18.
We show that Janus kinase 2 (JAK2), and more specifically just its intact N-terminal domain, binds to the erythropoietin receptor (EpoR) in the endoplasmic reticulum and promotes its cell surface expression. This interaction is specific as JAK1 has no effect. Residues 32 to 58 of the JAK2 JH7 domain are required for EpoR surface expression. Alanine scanning mutagenesis of the EpoR membrane proximal region reveals two modes of EpoR-JAK2 interaction. A continuous block of EpoR residues is required for functional, ligand-independent binding to JAK2 and cell surface receptor expression, whereas four specific residues are essential in switching on prebound JAK2 after ligand binding. Thus, in addition to its kinase activity required for cytokine receptor signaling, JAK is also an essential subunit required for surface expression of cytokine receptors.  相似文献   

19.
Linear endocytic motifs of signaling receptors as well as their ubiquitination determine the rate of ligand-induced endocytosis that mediates down-regulation of these receptors and restricts the magnitude and duration of their respective signal transduction pathways. We previously hypothesized that, in the absence of its cognate ligand, type I interferon (IFN), the IFNalpha receptor chain 1 (IFNAR1) receptor chain is protected from basal endocytosis by a hypothetical masking complex that prevents the Tyr-based endocytic motif within IFNAR1 from interacting with components of the adaptin protein complex 2 (AP2). Here we identify a member of the Janus kinase (Jak) family, Tyk2, as a component of such a masking complex. In the absence of ligand or of receptor chain ubiquitination, binding of Janus kinase Tyk2 within the proximity of the Tyr-based linear motif of IFNAR1 is required to prevent IFNAR1 internalization and to maintain its cell surface expression. Furthermore, interaction experiments revealed that Tyk2 physically shields this Tyr-based motif from the recognition by the AP50 subunit of AP2. These data delineate a long-sought ligand- and ubiquitin-independent mechanism by which Tyk2 contributes to both the regulation of total IFNAR1 levels as well as the regulation of the cell surface density of this receptor chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号