首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The experimental material accumulated for two decades allows concluding that regulation of lifespan has hormonal control based on the evolutionary conservative insulin/IGF-1 receptor signaling pathway. Data obtained on the commonly accepted models of longevity — nematode Caenorhabditis elegans, fruit fly Drosophila melanogaster, and rodents — demonstrate that reduction of the insulin/IGF-1 signaling pathway results in an increase of the lifespan. There is shown involvement in the longevity mechanism of a large group of genes whose products perform control of metabolism, feeding behavior, reproduction, and resistance to oxidative stress. Discussed in this review are current concepts of the insulin/IGF-1 signaling system as a regulatory “longevity module” and of its possible role in prolongation of life in the higher vertebrates, including human.  相似文献   

4.
Pore-forming toxins (PFTs) are the single largest class of bacterial virulence factors. The DAF-2 insulin/insulin-like growth factor-1 signaling pathway, which regulates lifespan and stress resistance in Caenorhabditis elegans, is known to mutate to resistance to pathogenic bacteria. However, its role in responses against bacterial toxins and PFTs is as yet unexplored. Here we reveal that reduction of the DAF-2 insulin-like pathway confers the resistance of Caenorhabditis elegans to cytolitic crystal (Cry) PFTs produced by Bacillus thuringiensis. In contrast to the canonical DAF-2 insulin-like signaling pathway previously defined for aging and pathogenesis, the PFT response pathway diverges at 3-phosphoinositide-dependent kinase 1 (PDK-1) and appears to feed into a novel insulin-like pathway signal arm defined by the WW domain Protein 1 (WWP-1). In addition, we also find that WWP-1 not only plays an important role in the intrinsic cellular defense (INCED) against PFTs but also is involved in innate immunity against pathogenic bacteria Pseudomonas aeruginosa and in lifespan regulation. Taken together, our data suggest that WWP-1 and DAF-16 function in parallel within the fundamental DAF-2 insulin/IGF-1 signaling network to regulate fundamental cellular responses in C. elegans.  相似文献   

5.
6.
7.
Gami MS  Wolkow CA 《Aging cell》2006,5(1):31-37
Much excitement has arisen from the observation that decrements in insulin‐like signaling can dramatically extend lifespan in the nematode, Caenorhabditis elegans, and fruitfly, Drosophila melanogaster. In addition, there are tantalizing hints that the IGF‐I pathway in mice may have similar effects. In addition to dramatic effects on lifespan, invertebrate insulin‐like signaling also promotes changes in stress resistance, metabolism and development. Which, if any, of the various phenotypes of insulin pathway mutants are relevant to longevity? What are the genes that function in collaboration with insulin to prolong lifespan? These questions are at the heart of current research in C. elegans longevity. Two main theories exist as to the mechanism behind insulin's effects on invertebrate longevity. One theory is that insulin programs metabolic parameters that prolong or reduce lifespan. The other theory is that insulin determines the cell's ability to endure oxidative stress from respiration, thereby determining the rate of aging. However, these mechanisms are not mutually exclusive and several studies seem to support a role for both. Here, we review recently published reports investigating the mechanisms behind insulin's dramatic effect on longevity. We also spotlight several C. elegans genes that are now known to interact with insulin signaling to determine lifespan. These insights into pathways affecting invertebrate lifespan may provide a basis for developing strategies for pharmacological manipulation of human lifespan.  相似文献   

8.
GH/insulin/IGF-1 signaling is a vital pathway e.g. in the regulation of protein synthesis and glucose metabolism. However, mouse dwarf strains which exhibit reduced GH secretion and subsequently a decline in IGF-1 signaling can live longer than their wild type counterparts. There is striking evidence indicating that the IGF-1/PI-3K/AKT signaling enhances growth of animals during development but later in life can potentiate the aging process. This conserved pleiotropy has been called the insulin/IGF-1 paradox. In Caenorhabditis elegans, the decline in this pathway activates the DAF-16 gene, an ortholog of mammalian FoxO genes, which regulate stress resistance and longevity. The mammalian PI-3K/AKT pathway also activates the NF-κB signaling that inhibits apoptosis and triggers inflammatory responses. Many longevity genes, e.g. FoxOs and SIRT1, are inhibitors of NF-κB signaling. We will discuss the evidence that insulin/IGF-1 signaling can enhance the NF-κB signaling and subsequently potentiate the aging process and aggravate age-related degenerative diseases.  相似文献   

9.
10.
11.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   

12.
Aging is associated with functional and structural declines in organisms over time. Organisms as diverse as the nematode Caenorhabditis elegans and mammals share signaling pathways that regulate aging and lifespan. In this review, we discuss recent combinatorial approach to aging research employing C. elegans and mammalian systems that have contributed to our understanding of evolutionarily conserved aging-regulating pathways. The topics covered here include insulin/IGF-1, mechanistic target of rapamycin (mTOR), and sirtuin signaling pathways; dietary restriction; autophagy; mitochondria; and the nervous system. A combinatorial approach employing high-throughput, rapid C. elegans systems, and human model mammalian systems is likely to continue providing mechanistic insights into aging biology and will help develop therapeutics against age-associated disorders.  相似文献   

13.
Aging is accompanied by alterations in epigenetic marks that control chromatin states, including histone acetylation and methylation. Enzymes that reversibly affect histone marks associated with active chromatin have recently been found to regulate aging in Caenorhabditis elegans. However, relatively little is known about the importance for aging of histone marks associated with repressed chromatin. Here, we use a targeted RNAi screen in C. elegans to identify four histone demethylases that significantly regulate worm lifespan, UTX‐1, RBR‐2, LSD‐1, and T26A5.5. Interestingly, UTX‐1 belongs to a conserved family of histone demethylases specific for lysine 27 of histone H3 (H3K27me3), a mark associated with repressed chromatin. Both utx‐1 knockdown and heterozygous mutation of utx‐1 extend lifespan and increase the global levels of the H3K27me3 mark in worms. The H3K27me3 mark significantly drops in somatic cells during the normal aging process. UTX‐1 regulates lifespan independently of the presence of the germline, but in a manner that depends on the insulin‐FoxO signaling pathway. These findings identify the H3K27me3 histone demethylase UTX‐1 as a novel regulator of worm lifespan in somatic cells.  相似文献   

14.
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.  相似文献   

15.
Superoxide dismutases (SODs) promote a conversion of harmful reactive oxygen species (ROS) to relatively moderate forms, resulting in the extension of lifespan in the nematode Caenorhabditis elegans under caloric restriction. The lifespan of the rotifer Brachionus plicatilis is also markedly extended by caloric restriction. We, therefore, cloned cDNA encoding SOD activated with Mn (Mn SOD) from B. plicatilis and examined its expression pattern in rotifers raised with energy restricted diet. The full length deduced amino acid sequence of the rotifer Mn SOD showed 61% identity with the C. elegans ortholog. Four amino acid residues that are essential to the binding of this enzyme to Mn were conserved in the rotifer Mn SOD. Subsequently we examined the mRNA expression patterns of Mn SOD using highly sensitive quantitative real-time PCR for various rotifer populations that are likely to differ in their lifespans in experiments on calorie restricted diets. The accumulated mRNA levels of Mn SOD were found to increase in supposedly long-lived rotifers. These results suggest that Mn SOD is possibly related to the aging of B. plicatilis.  相似文献   

16.
Insulin‐like signalling controls C. elegans lifespan, development and metabolism. Mutations that weaken this insulin‐like signalling pathway extend lifespan. Severe mutations abolishing insulin‐like signalling cause animals to arrest development as dauer larvae, a larval form specialized for stress resistance and long‐term survival. A number of the genes acting in this pathway have been cloned, including daf‐2, which encodes a homolog of vertebrate insulin/IGF‐I receptors, and age‐1, encoding the C. elegans homolog of the PI(3)K p110 catalytic subunit. In order to identify cells from which insulin‐like signalling controls lifespan and development, transgenic animals were constructed which possessed insulin‐like signalling only in specific cell types. To achieve this, cell‐type specific promoters were used to drive expression of daf‐2 or age‐1 cDNAs in daf‐2(–/–) or age‐1(–/–) backgrounds, respectively. By utilizing this strategy, we could restore wild‐type daf‐2 or age‐1 activity only in cells that are capable of expressing each transgene. Restoring insulin‐like signalling to the nervous system of daf‐2 or age‐1 mutants could rescue long lifespan. This result was specific for transgenes restoring insulin‐like signalling to the nervous system. Expressing daf‐2 or age‐1 cDNAs from muscle‐ or intestinally‐restricted promoters was insufficient to rescue lifespan. In contrast, age‐1 and daf‐2 expression in either neuronal or non‐neuronal cell types rescued dauer larval arrest in the mutants. These findings demonstrate that insulin‐like signalling pathways in the nervous system control C. elegans lifespan.  相似文献   

17.
Insulin stimulates phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases (ERK) in various mammalian cells. To study the role of PI3K in insulin stimulation of ERK, we employed PI3K inhibitor LY294002 and mouse embryonic R? fibroblasts lacking IGF-1 receptors. In these R? cells, PI3K inhibition by LY294002 enhanced insulin stimulation of ERK phosphorylation whereas LY294002 inhibited insulin stimulation of Akt phosphorylation. The enhanced insulin stimulation of ERK phosphorylation was accompanied by increased IRS-1 tyrosine phosphorylation. Insulin stimulation of insulin receptor tyrosine phosphorylation was not altered. PI3K inhibition increased IRS-1–Grb2 complex formation and ras activity following insulin treatment of cells. Increased insulin stimulation of ERK by PI3K inhibition was mediated by the MEK/ERK pathway, but did not involve inhibitory Ser259 phosphorylation of raf that was reported to be mediated by Akt. In summary, PI3K inhibition in R? cells enhanced insulin stimulation of ERK phosphorylation by mechanisms involving enhancement of IRS-1 tyrosine phosphorylation, IRS-1–Grb2 complex formation and the ras/MEK/ERK pathway.  相似文献   

18.
In C. elegans, the highly conserved DAF-2/insulin/insulin-like growth factor 1 receptor signaling (IIS) pathway regulates longevity, metabolism, reproduction and development. In mammals, acid sphingomyelinase (ASM) is an enzyme that hydrolyzes sphingomyelin to produce ceramide. ASM has been implicated in CD95 death receptor signaling under certain stress conditions. However, the involvement of ASM in growth factor receptor signaling under physiological conditions is not known. Here, we report that in vivo ASM functions as a positive regulator of the DAF-2/IIS pathway in C. elegans. We have shown that inactivation of asm-3 extends animal lifespan and promotes dauer arrest, an alternative developmental process. A significant cooperative effect on lifespan is observed between asm-3 deficiency and loss-of-function alleles of the age-1/PI 3-kinase, with the asm-3; age-1 double mutant animals having a mean lifespan 259% greater than that of the wild-type animals. The lifespan extension phenotypes caused by the loss of asm-3 are dependent on the functions of daf-16/FOXO and daf-18/PTEN. We have demonstrated that inactivation of asm-3 causes nuclear translocation of DAF-16::GFP protein, up-regulates endogenous DAF-16 protein levels and activates the downstream targeting genes of DAF-16. Together, our findings reveal a novel role of asm-3 in regulation of lifespan and diapause by modulating IIS pathway. Importantly, we have found that two drugs known to inhibit mammalian ASM activities, desipramine and clomipramine, markedly extend the lifespan of wild-type animals, in a manner similar to that achieved by genetic inactivation of the asm genes. Our studies illustrate a novel strategy of anti-aging by targeting ASM, which may potentially be extended to mammals.  相似文献   

19.
Recent studies have indicated that various growth factors are involved in synaptic functions; however, the precise mechanisms remain unclear. In order to elucidate the molecular mechanisms of the growth factor-mediated regulation of presynaptic functions, the effects of epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on neurotransmitter release were studied in rat PC12 cells. Brief treatment with EGF and IGF-1 enhanced Ca2+-dependent dopamine release in a concentration-dependent manner. EGF activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase) pathways, and the EGF-dependent enhancement of DA release was suppressed by a MAPK kinase inhibitor as well as by PI3-kinase inhibitors. In striking contrast, IGF-1 activated the PI3-kinase pathway but not the MAPK pathway, and IGF-1-dependent enhancement was suppressed by a PI3-kinase inhibitor but not by a MAPK kinase inhibitor. The enhanced green fluorescent protein-tagged pleckstrin homology (PH) domain of protein kinase B, which selectively binds to phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, was translocated to the plasma membrane after treatment with either EGF or NGF. By contrast, no significant redistribution was induced by IGF-1. These results indicate that PI3-kinase participates in the enhancement of neurotransmitter release by two distinct mechanisms: EGF and NGF activate PI3-kinase in the plasma membrane, whereas IGF-1 activates PI3-kinase possibly in the intracellular membrane, leading to enhancement of neurotransmitter release in a MAPK-dependent and -independent manner respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号