首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A 2 m DNA-like plasmid, pSR1, isolated from a strain of Zygosaccharomyces rouxii has three coding frames, P, S and R. Insertional inactivation of R completely abolished the intramolecular recombination, and the defect was complemented by an intact R frame on a coexistent plasmid molecule. The P and S regions were also transactive and important, but not essential, for the stable maintenance of the plasmid molecules. Insertional disruption of the P frame suggested that it produces a protein factor. Similar insertional disruption of the S frame affected the plasmid stability in Z. rouxii and Saccharomyces cerevisiae hosts differently, depending on whether the inserted DNA fragment was a short 8 bp SalI linker or a long (2.2 kb) DNA fragment. Results strongly suggested that the S region encodes two factors, one RNA and the other a protein, and that the S protein is compatible with a sprecific hostfactor in Z. rouxii, but not in S. cerevisiae. In addition, a cis-acting locus, Z, was found at a site in the plasmid molecule where no distinct open reading frames were located. No long direct repeats or inverted repeats were observed in the Z region, such as are found in the REP3 locus of 2 m DNA.  相似文献   

2.
Molecular and functional organization of yeast plasmid pSR1   总被引:9,自引:0,他引:9  
The nucleotide sequence of a 6251 base-pair plasmid, pSR1, harbored in an osmophilic haploid yeast, Zygosaccharomyces rouxii (formerly Saccharomyces rouxii), was determined. No homology was detected between the sequences of pSR1 and 2-micron DNA of Saccharomyces cerevisiae. pSR1 has a pair of inverted repeats consisting of completely homologous 959 base-pair sequences, which separate two unique sequences 2654 base-pairs and 1679 base-pairs long. Each inverted repeat has an ARS sequence functional in both Z. rouxii and S. cerevisiae hosts. Short direct repeats or dyad symmetries were observed in the inverted repeats similar to those found close to the replication origin of 2-micron DNA. Three open reading frames, P, S and R, each able to encode a protein of molecular weight larger than 10,000, were found. Insertional inactivation of R gave rise to a defect in the intramolecular recombination at the inverted repeats, and that of S reduced the copy number of pSR1 in the S. cerevisiae host. The maintenance stability of the plasmid was also tested in the heterogeneous S. cerevisiae host, but the results of the insertional inactivation of P, S and R were ambiguous. pSR1 and 2-micron DNA were compatible in S. cerevisiae cells, but the protein factors encoded by these plasmids did not complement each other.  相似文献   

3.
A circular DNA plasmid, pSR1, isolated from Zygosaccharomyces rouxii has a pair of inverted repeats consisting of completely homologous 959-base pair (bp) sequences. Intramolecular recombination occurs frequently at the inverted repeats in cells of Saccharomyces cerevisiae, as well as in Z. rouxii, and is catalyzed by a protein encoded by the R gene of its own genome. The recombination is, however, independent of the RAD52 gene of the host genome. A site for initiation of the intramolecular recombination in the S. cerevisiae host was delimited into, at most, a 58-bp region in the inverted repeats by using mutant plasmids created by linker insertion. The 58-bp region contains a pair with 14-bp dyad symmetry separated by a 3-bp spacer sequence. The recombination initiated at this site was accompanied by a high frequency of gene conversion (3 to 50% of the plasmid clones examined). Heterogeneity created by the linker insertion or by a deletion (at most 153 bp so far tested) at any place on the inverted repeats was converted to a homologous combination by the gene conversion, even in the rad52-1 mutant host. A mechanism implying branch migration coupled with DNA replication is discussed.  相似文献   

4.
5.
Summary A DNA plasmid resembling 2 m DNA of Saccharomyces cerevisiae, pSR1, isolated from a strain of Zygosaccharomyces rouxii, has a cis-acting region, Z, for plasmid stability. The Z region was delimited to a sequence of at most 383 bp in a small unique region of the plasmid. The Z region is high in A:T pairs and contains three different pairs of short (ca. 25 bp) inverted repeats with 65% to 79% homology and three copies of direct repeats of 24 to 27 bp in length with 67% to 72% homology, but does not encode a noteworthy open reading frame. It was suggested that the Z region interacts with the S product(s) encoded by the same plasmid and with a specific host factor, but not with the other stabilization factor encoded by the P locus on the sPR1 molecule.  相似文献   

6.
Site-specific recombination promotes plasmid amplification in yeast   总被引:32,自引:0,他引:32  
F C Volkert  J R Broach 《Cell》1986,46(4):541-550
All stable, naturally occurring circular yeast DNA plasmids contain a pair of long, nontandem inverted repeats that undergo frequent reciprocal recombination. This yields two plasmid inversion isomers that exist in the cell in equal numbers. In the 2 mu circle plasmid of S. cerevisiae such inversion is catalyzed by a plasmid-encoded site-specific recombinase, FLP. We show that the site-specific recombination system of 2 mu circle enables the plasmid to increase its mean intracellular copy number in yeast cells growing under nonselective conditions. This apparently occurs by a FLP-induced transient shift in the mode of replication from theta to double rolling circle as initially proposed by Futcher. This capability may ensure stable maintenance of the plasmid by enabling it to correct downward deviations in copy number that result from imprecision of the plasmid-encoded partitioning system.  相似文献   

7.
The RecBCD nuclease of Escherichia coli and "recombinase" determined by R1drd-19 plasmid (the latter is able to replace at least partially the indicated cellular enzyme) were shown to differ from each other in some essential features. The product encoded by the plasmid as distinct from RecBCD nuclease practically is not sensitive to inhibition by GamS protein of the lambda phage. Earlier, it was found that the presence of R1drd-19 plasmid in the recBC cells restores the level of the total ATP-dependent exonuclease activity because of appearance in such cells of a new exonuclease activity also ATP-dependent. The exonuclease activity determined by R1drd-19 plasmid was found to differ from the corresponding activity of the RecBCD enzyme. The plasmid enzyme was able to prevent reproduction of T4g2- mutant on recBC cells. The ability of the plasmid "recombinase" to some stimulation of intrachromosomal recombination in recA mutant witness to incomplete RecA-dependence of its function. No significant homology was registered between Escherichia coli DNA fragment containing the recB, recC, recD genes and the EcoRI-C-fragment of R1drd-19 carrying the sequences responsible for recombination and repair functions of the plasmid.  相似文献   

8.
9.
10.
Plasmid R1drd-19 markedly improves the recombination deficiency of recB and recBrecC mutants of Escherichia coli K12 as measured by Hfr crosses and increases their resistance to uv inactivation. The effect correlates with the production of an ATP-dependent ds DNA exonuclease in recB/R1drd-19 cells. This paper further investigates the suppressive effect of plasmid R1drd-19 on the recB mutation of E. coli. The gene(s) responsible for the effect was localized to the 13.1-kb EcoRI-C fragment of the resistance transfer factor (RTF) portion of R1drd-19. The plasmid-encoded activity does not merely replace the RecBCD enzyme failure but differs in several significant ways. It promotes a hyper-recombinogenic phenotype, as judged by the phenomenon of super oligomerization of the tester pACYC184 plasmid in recB/R1drd-19 cells and two inter- and intramolecular plasmid recombination test systems. It is probably not inhibited by lambda Gam protein and does not restrict plating of T4gp2 mutant. No significant homology between the E. coli chromosomal fragment carrying recBrecCrecD genes and the EcoRI-C fragment of R1drd-19 was observed. It is suggested that the plasmid-encoded recombination activity is involved in a new minor recombination pathway (designated RecP, for Plasmid). RecP resembles in some traits the RecBCD-independent pathways RecE and RecF but differs in activity and perhaps substrate specificity from the main RecBCD pathway.  相似文献   

11.
The 2-micron plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombinase (FLP) that promotes inversion across a unique site contained in each of the 599-base-pair inverted repeats of the plasmid. We have studied the topological changes generated in supercoiled substrates after exposure to the purified FLP protein in vitro. When a supercoiled substrate bearing two FLP target sequences in inverse orientation is treated with FLP, the products are multiply knotted structures that arise as a result of random entrapment of interdomainal supercoils. Likewise, a supercoiled substrate bearing two target sequences in direct orientation yields multiply interlocked catenanes as the product. Both types of substrate seem to be able to undergo repeated rounds of recombination that result in products of further complexity. The FLP protein also acts as a site-specific topoisomerase during the recombination reaction.  相似文献   

12.
A cis-acting locus, Z, of plasmid pSRl functions in stable maintenance of the plasmid in the native host, Zygosaccharomyces rouxii. The Z locus was shown to be located in a 482 by sequence in the 5′ upstream region of an open reading frame, P, by subcloning various DNA fragments in a plasmid replicating via the ARS1 sequence of the Saccharomyces cerevisiae chromosome. Northern analysis revealed that the Z region is not transcribed in either the native host Z. rouxii or the heterologous host S. cerevisiae. The Z region is protected from microccocal nuclease attack in Z. rouxii but not in S. cerevisiae, its protection depending on the product of the S gene encoded by pSR1. Gel retardation assays suggested that a factor present in nuclear extracts of Z. rouxii cells, irrespective of the presence or absence of a resident pSRI plasmid, binds to a 111 by Rsal-Sacll sequence in the Z region. These findings suggest that a host protein binds to the Z locus and that the S product interacts with this DNA-protein complex and stabilizes pSRl.  相似文献   

13.
14.
R1162 is efficiently comobilized during conjugative transfer of the self-transmissible plasmid R751. Bacteriophage M13 derivatives that contain two directly repeated copies of oriT, the site on R1162 DNA required in cis for mobilization, were constructed. Phage DNA molecules underwent recombination during infection of Escherichia coli, with the product retaining a single functional copy of oriT. Recombination was strand specific and depended on R1162 gene products involved in mobilization, but did not require the self-transmissible plasmid vector. Two genes were identified, one essential for recombination and the other affecting the frequency of recombination. Recombination of bacteriophage DNA could form the basis of a simple model for some of the events occurring during conjugation without the complexity of a true mating system.  相似文献   

15.
The NH2-terminal signal region comprising of approximately 70% length of the prepro-sequence of the pGKL killer precursor protein was found to direct an efficient secretion of the mouse alpha-amylase into the culture medium of Saccharomyces cerevisiae. The alpha-amylase molecule secreted into the culture medium was identified by both immuno-blotting and assay of the enzyme activity. The amount of alpha-amylase secreted via the killer toxin signal was comparable to that directed by the leader sequence of mating factor alpha. The secretion of alpha-amylase using the killer toxin signal was blocked at 37C but not at 25C in sec18-1 host, indicating that alpha-amylase is exported through the normal secretion pathway of S. cerevisiae.  相似文献   

16.
Minicells carrying the subcloned mer operon from plasmid R100 were pulse-labeled with [35S]methionine, and the labeled polypeptides were analyzed at various subsequent times by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Hg(II) reductase monomer encoded by plasmid R100 occurred as two proteins of 69 and 66 kilodaltons (kd). The minor 66-kd protein is a modified form of the 69-kd protein. This modification occurs in vivo. Both of these mer proteins are found in the soluble fraction of the cell; however, the 66-kd protein appears to have a slight affinity for the cellular envelope. Both the 69- and 66-kd mer proteins have pI values greater (pI = 5.8) than that reported (pI = 5.3) for the analogous monomer encoded by plasmid R831. The 15.1- and 14-kd mer proteins are localized in the inner membrane and are probably elements of the mer-determined Hg(II) uptake system. These two mer membrane proteins, which are antigenically unrelated to the Hg(II) reductase monomer, are quite basic (pI values greater than 7.8). The 12-kd mer protein is also a basic polypeptide that is present in the soluble fraction of the cell. Unlike the two membrane-bound mer proteins, the 12-kd mer protein is processed from a 13-kd precursor.  相似文献   

17.
The yeast protein encoded by PUB1 binds T-rich single stranded DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have characterized binding activities in yeast which recognise the T-rich strand of the yeast ARS consensus element and have purified two of these to homogeneity. One (ACBP-60) is detectable in both nuclear and whole cell extracts, while the other (ACBP-67) is apparent only after fractionation of extracts by heparin-sepharose chromatography. The major binding activity detected in nuclear extracts was purified on a sequence-specific DNA affinity column as a single polypeptide with apparent mobility of 60kDa (ACBP-60). This protein co-fractionates with nuclei, is present at several thousand copies per cell and has a Kd for the T-rich single strand of the ARS consensus between 10(-9) and 10(-10) M. Competition studies with simple nucleic acid polymers show that ACBP-60 has marginally higher affinity for poly dT30 than for a 30 nt oligomer containing the T-rich strand of ARS 307, and approximately 10 fold higher affinity for poly rU. Internal sequence information of purified p60 reveals identity with the open reading frames of genes PUB1 and RNP1 which encode polyuridylate binding protein(s). The second binding activity, ACBP-67, also binds specifically to the T-rich single strand of the ARS consensus, but with considerably lower affinity than ACBP-60. Peptide sequence reveals that the 67kDa protein is identical to the major polyA binding protein in yeast, PAB1.  相似文献   

18.
In the circular plasmid pKD1, which stably replicates in Kluyveromyces lactis, the three open reading frames encode a site-specific recombinase (gene A) and two proteins involved in mitotic stability (genes B and C). A recombination analysis of plasmids in which gene B or C is inactivated reveals that unlike the 2 microns plasmid of Saccharomyces cerevisiae, these genes are also required for the site specificity of plasmid recombination.  相似文献   

19.
The 2 mu plasmid of the yeast Saccharomyces cerevisiae encodes a site-specific recombination system consisting of the FLP protein and two inverted recombination sites on the plasmid. The minimal fully functional substrate for in-vitro recombination in this system consists of two FLP protein binding sites separated by an eight base-pair spacer sequence. We have used site-directed mutagenesis to generate every possible mutation (36 in all) within 11 base-pairs of one FLP protein binding site and the base-pair immediately flanking it. The base-pairs within the binding site can be separated into three classes on the basis of these results. Thirty of the 36 sequence changes, including all three at seven different positions (class I) produce a negligible or modest effect on FLP protein-promoted recombination. In particular, most transition mutations are well-tolerated in this system. In only one case do all three possible mutations produce large effects (class II). At three positions, clustered near the site at which DNA is cleaved by FLP protein, one of the two possible transversions produces a large effect on recombination, while the other two changes produce modest effects (class III). For seven mutants for which FLP protein binding was measured, a direct correlation between decreases in recombination activity and in binding was observed. Positive effects on the reaction potential of mutant sites are observed when the other FLP binding site in a single recombination site is unaltered or when the second recombination site in a reaction is wild-type. This suggests a functional interaction between FLP binding sites both in cis and in trans. When two mutant recombination sites (each with 1 altered FLP binding site) are recombined, the relative orientation of the mutations (parallel or antiparallel) has no effect on the result. These results provide an extensive substrate catalog to complement future studies in this system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号