首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized a complex chromosomal rearrangement in band Xq28, in an adrenoleukodystrophy patient who also has blue-cone monochromacy. A 130-kb region upstream from the color-vision pigment genes was isolated as yeast artificial chromosome or cosmid clones. Another Xq28 sequence, not included in the above region, was obtained by cloning a deletion breakpoint from the patient. Using probes derived from the cloned sequences, we have shown that the rearrangement affects the color-pigment genes and includes two deletions, most likely separated by a large (greater than 110-kb) inversion. One deletion encompasses part of the pigment gene cluster and 33 kb of upstream sequences and accounts for the patient's blue-cone monochromacy. If this rearrangement also caused ALD, the disease gene would be expected to lie within or close to one of the deletions. However, deletions were not detected in a 50-kb region upstream of the red-color-pigment gene in 81 other ALD patients. Two CpG islands were mapped, at 46 and 115 kb upstream from the pigment genes.  相似文献   

2.
Blue cone monochromatism (BCM) is a rare X-linked colour vision disorder characterized by the absence of both red and green cone sensitivity. Most mutations leading to BCM fall into two classes of alterations in the red and green pigment gene array at Xq28. In one class the red and green pigment genes are inactivated by deletion in the locus control region. In the second class genetic rearrangements have created an isolated pigment gene that carries an inactivating point mutation. Here we describe a clinical case of BCM caused by a new mutation where exon 4 of an isolated red pigment gene has been deleted. The finding represents the first intragenic deletion yet described among red and green pigment genes. Received: 29 December 1995 / Revised: 30 May 1996  相似文献   

3.
We have recently characterized Nicotiana cytoplasmic (cyt) tRNAGCA Cys as novel UGA suppressor tRNA. Here we have isolated its corresponding (NtC1) and a variant (NtC2) gene from a genomic library of Nicotiana rustica. Both tRNACys genes are efficiently transcribed in HeLa cell nuclear extract and yield mature cyt tRNAsCys. Sequence analysis of the upstream region of the RAD51 single-copy gene of the Arabidopsis thaliana genome revealed a cluster of three tRNACys genes which have the same polarity and comprise highly similar flanking sequences. Of the three Arabidopsis tRNACys genes only one (i.e. AtC2) appears to code for a functional gene which exhibits an almost identical nucleotide sequence to NtC1. These are the first sequenced nuclear tDNAsCys of plant origin.  相似文献   

4.
The feasibility of introducing point mutations in vivo using single-stranded DNA oligonucleotides (ssON) has been demonstrated but the efficiency and mechanism remain elusive and potential side effects have not been fully evaluated. Understanding the mechanism behind this potential therapy may help its development. Here, we demonstrate the specific repair of an endogenous non-functional hprt gene by a ssON in mammalian cells, and show that the frequency of such an event is enhanced when cells are in S-phase of the cell cycle. A potential barrier in using ssONs as gene therapy could be non-targeted mutations or gene rearrangements triggered by the ssON. Both the non-specific mutation frequencies and the frequency of gene rearrangements were largely unaffected by ssONs. Furthermore, we find that the introduction of a mutation causing the loss of a functional endogenous hprt gene by a ssON occurred at a similarly low but statistically significant frequency in wild type cells and in cells deficient in single strand break repair, nucleotide excision repair and mismatch repair. However, this mutation was not induced in XRCC3 mutant cells deficient in homologous recombination. Thus, our data suggest ssON-mediated targeted gene repair is more efficient in S-phase and involves homologous recombination.  相似文献   

5.
Rod monochromacy is a rare condition in vertebrates characterized by the absence of cone photoreceptor cells. The resulting phenotype is colourblindness and low acuity vision in dim-light and blindness in bright-light conditions. Early reports of xenarthrans (armadillos, sloths and anteaters) suggest that they are rod monochromats, but this has not been tested with genomic data. We searched the genomes of Dasypus novemcinctus (nine-banded armadillo), Choloepus hoffmanni (Hoffmann''s two-toed sloth) and Mylodon darwinii (extinct ground sloth) for retinal photoreceptor genes and examined them for inactivating mutations. We performed PCR and Sanger sequencing on cone phototransduction genes of 10 additional xenarthrans to test for shared inactivating mutations and estimated the timing of inactivation for photoreceptor pseudogenes. We concluded that a stem xenarthran became an long-wavelength sensitive-cone monochromat following a missense mutation at a critical residue in SWS1, and a stem cingulate (armadillos, glyptodonts and pampatheres) and stem pilosan (sloths and anteaters) independently acquired rod monochromacy early in their evolutionary history following the inactivation of LWS and PDE6C, respectively. We hypothesize that rod monochromacy in armadillos and pilosans evolved as an adaptation to a subterranean habitat in the early history of Xenarthra. The presence of rod monochromacy has major implications for understanding xenarthran behavioural ecology and evolution.  相似文献   

6.
We determined the complete nucleotide sequence of the mitochondrial genome of an angiosperm, sugar beet (Beta vulgaris cv TK81-O). The 368 799 bp genome contains 29 protein, five rRNA and 25 tRNA genes, most of which are also shared by the mitochondrial genome of Arabidopsis thaliana, the only other completely sequenced angiosperm mitochondrial genome. However, four genes identified here (namely rps13, trnF-GAA, ccb577 and trnC2-GCA) are missing in Arabidopsis mitochondria. In addition, four genes found in Arabidopsis (ccb228, rpl2, rpl16 and trnY2-GUA) are entirely absent in sugar beet or present only in severely truncated form. Introns, duplicated sequences, additional reading frames and inserted foreign sequences (chloroplast, nuclear and plasmid DNA sequences) contribute significantly to the overall size of the sugar beet mitochondrial genome. Nevertheless, 55.6% of the genome has no obvious features of information. We identified a novel tRNACys gene (trnC2-GCA) which shows no sequence homology with any tRNACys genes reported so far in higher plants. Intriguingly, this tRNA gene is actually transcribed into a mature tRNA, whereas the native tRNACys gene (trnC1-GCA) is most likely a pseudogene.  相似文献   

7.
8.
9.
A recN ? (recN1) strain of Bacillus subtilis was constructed. The effects of this and recF, recH and addAB mutations on recombination proficiency were tested. Mutations in the recN, recF recH and addAB genes, when present in an otherwise Rec+ B. subtilis strain, did not affect genetic exchange. Strains carrying different combinations of mutations in these genes were constructed and examined for their sensitivity to 4-nitroquinoline1-oxide (4NQO) and recombination proficiency. The recH mutation did not affect the 4NQO sensitivity of recN and recF cells and it only marginally affected that of addA addB cells. However, it reduced genetic recombination in these cells 102- to 104-fold. The addA addB mutations increased the 4NQO sensitivity of recF and recN cells, but completely blocked genetic recombination of recF cells and marginally affected recombination in recN cells. The recN mutation did not affect the recombinational capacity of recF cells. These data indicate that the recN gene product is required for, DNA repair and recombination and that the recF, recH and addAB genes provide overlapping activities that compensate for the effects of single mutants proficiency. We proposed that the recF, recH, recB and addA gene products define four different epistatic groups.  相似文献   

10.
The genomic duplication associated with Potocki-Lupski syndrome (PTLS) maps in close proximity to the duplication associated with Charcot-Marie-Tooth disease type 1A (CMT1A). PTLS is characterized by hypotonia, failure to thrive, reduced body weight, intellectual disability, and autistic features. CMT1A is a common autosomal dominant distal symmetric peripheral polyneuropathy. The key dosage-sensitive genes RAI1 and PMP22 are respectively associated with PTLS and CMT1A. Recurrent duplications accounting for the majority of subjects with these conditions are mediated by nonallelic homologous recombination between distinct low-copy repeat (LCR) substrates. The LCRs flanking a contiguous genomic interval encompassing both RAI1 and PMP22 do not share extensive homology; thus, duplications encompassing both loci are rare and potentially generated by a different mutational mechanism. We characterized genomic rearrangements that simultaneously duplicate PMP22 and RAI1, including nine potential complex genomic rearrangements, in 23 subjects by high-resolution array comparative genomic hybridization and breakpoint junction sequencing. Insertions and microhomologies were found at the breakpoint junctions, suggesting potential replicative mechanisms for rearrangement formation. At the breakpoint junctions of these nonrecurrent rearrangements, enrichment of repetitive DNA sequences was observed, indicating that they might predispose to genomic instability and rearrangement. Clinical evaluation revealed blended PTLS and CMT1A phenotypes with a potential earlier onset of neuropathy. Moreover, additional clinical findings might be observed due to the extra duplicated material included in the rearrangements. Our genomic analysis suggests replicative mechanisms as a predominant mechanism underlying PMP22-RAI1 contiguous gene duplications and provides further evidence supporting the role of complex genomic architecture in genomic instability.  相似文献   

11.
Blue cone monochromacy (BCM) is an X-linked ocular disease characterized by poor visual acuity, nystagmus, and photodysphoria in males with severely reduced color discrimination. Deletions, rearrangements and point mutations in the red and green pigment genes have been implicated in causing BCM. We assessed the spectrum of genetic alterations in ten families with BCM by Southern blot, polymerase chain reaction, and sequencing analysis, and the phenotype was characterized by ophthalmoscopy, fluorescein angiography, and a battery of tests to assess color vision in addition to routine ophthalmological examination. All families showed clinical features associated with BCM. Acuities were reduced in all affected males, and photopic b-wave was reduced by more than 90% in seven families. In three families, however, the photopic b-wave response showed uncharacteristic relative preservation of 30-80% (of the clinical low-normal value). The color vision was unusually preserved in two affected males, but this was not correlated with photopic electroretinography retention. Progressive macular atrophy was observed in affected members of two BCM families while the rest of the families presented with normal fundus. In nine families deletions were identified in the gene encoding the red-sensitive photopigment and/or in the region up to 17.8 kb upstream of the red gene which contains the locus control region and other regulatory sequences. In the same nine families the red pigment gene showed a range of deletions from the loss of a single exon to loss of the complete red gene. In one family no mutation was found in the exons of the red gene or the locus control region but showed loss of the complete green gene. No association was observed between the phenotypes and genotypes in these families.  相似文献   

12.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10.Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) ''donor strains'' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the ''Keio'' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.  相似文献   

13.
Recombinant populations were the basis for Mendel's first genetic experiments and continue to be key to the study of genes, heredity, and genetic variation today. Genotyping several hundred thousand loci in a single assay by hybridizing genomic DNA to oligonucleotide arrays provides a powerful technique to improve precision linkage mapping. The genotypes of two accessions of Arabidopsis were compared by using a 400,000 feature exon-specific oligonucleotide array. Around 16,000 single feature polymorphisms (SFPs) were detected in ~8,000 of the ~26,000 genes represented on the array. Allelic variation at these loci was measured in a recombinant inbred line population, which defined the location of 815 recombination breakpoints. The genetic linkage map had a total length of 422.5 cM, with 676 informative SFP markers representing intervals of ~0.6 cM. One hundred fifteen single gene intervals were identified. Recombination rate, SFP distribution, and segregation in this population are not uniform. Many genomic regions show a clustering of recombination events including significant hot spots. The precise haplotype structure of the recombinant population was defined with unprecedented accuracy and resolution. The resulting linkage map allows further refinement of the hundreds of quantitative trait loci identified in this well-studied population. Highly variable recombination rates along each chromosome and extensive segregation distortion were observed in the population.  相似文献   

14.
Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1 cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3′ tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3′ tails after treatment with the rare-cutting endonuclease I-SceI. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3′ tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3′ tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SceI-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SceI-induced double-strand breaks.  相似文献   

15.
The complete nucleotide sequences of the mitochondrial genomes were determined for the three pelagic chaetognaths, Sagitta nagae, Sagitta decipiens, and Sagitta enflata. The mitochondrial genomes of these species which were 11,459, 11,121, and 12,631 bp in length, respectively, contained 14 genes (11 protein-coding genes, one transfer RNA gene, and two ribosomal RNA genes), and were found to have lost 23 genes that are present in the typical metazoan mitochondrial genome. The same mitochondrial genome contents have been reported from the benthic chaetognaths belonging to the family Spadellidae, Paraspadella gotoi and Spadella cephaloptera. Within the phylum Chaetognatha, Sagitta and Spadellidae are distantly related, suggesting that the gene loss occurred in the ancestral species of the phylum. The gene orders of the three Sagitta species are markedly different from those of the other non-Chaetognatha metazoans. In contrast to the region with frequent gene rearrangements, no gene rearrangements were observed in the gene cluster encoding COII–III, ND1–3, srRNA, and tRNAmet. Within this conserved gene cluster, gene rearrangements were not observed in the three Sagitta species or between the Sagitta and Spadellidae species. The gene order of this cluster was also assumed to be the ancestral state of the phylum.  相似文献   

16.
As one of the best studied members of the pharmaceutically relevant family of G-protein-coupled receptors, rhodopsin serves as a prototype for understanding the mechanism of G-protein-coupled receptor activation. Here, we aim at exploring functionally relevant conformational changes and signal transmission mechanisms involved in its photoactivation brought about through a cis-trans photoisomerization of retinal. For this exploration, we propose a molecular dynamics simulation protocol that utilizes normal modes derived from the anisotropic network model for proteins. Deformations along multiple low-frequency modes of motion are used to efficiently sample collective conformational changes in the presence of explicit membrane and water environment, consistent with interresidue interactions. We identify two highly stable regions in rhodopsin, one clustered near the chromophore, the other near the cytoplasmic ends of transmembrane helices H1, H2, and H7. Due to redistribution of interactions in the neighborhood of retinal upon stabilization of the trans form, local structural rearrangements in the adjoining H3-H6 residues are efficiently propagated to the cytoplasmic end of these particular helices. In the structures obtained by our simulations, all-trans retinal interacts with Cys167 on H4 and Phe203 on H5, which were not accessible in the dark state, and exhibits stronger interactions with H5, while some of the contacts made (in the cis form) with H6 are lost.  相似文献   

17.
18.
Hydrogenotrophic microbiota have a significant impact on colonic health; however, little is known about their diversity and ecology in situ. Here, molecular-based methods and multivariate analyses were used to examine the abundance and diversity of mucosa-associated hydrogenotrophic microbes in 90 biopsies collected from right colon, left colon and rectum of 25 healthy subjects. Functional genes of all three hydrogenotrophic groups were detected in at least one colonic region of all subjects. Methanogenic archaea (MA) constituted approximately one half of the hydrogenotrophic microbiota in each colonic region. Sulfate-reducing bacteria (SRB) were more abundant than acetogens in right colon, while acetogens were more abundant than SRB in left colon and rectum. MA genotypes exhibited low diversity, whereas SRB genotypes were diverse and generally similar across the three regions within subject but significantly variable among subjects. Multivariate cluster analysis defined subject-specific patterns for the diversity of SRB genotypes; however, neither subject- nor region-specific clusters were observed for the abundance of hydrogenotrophic functional genes. Sequence analyses of functional gene clones revealed that mucosa-associated SRB were phylogenetically related to Desulfovibrio piger, Desulfovibrio desulfuricans and Bilophila wadsworthia; whereas MA were related to Methanobrevibacter spp., Mb. smithii and the order Methanomicrobiales. Together these data demonstrate for the first time that the human colonic mucosa is persistently colonized by all three groups of hydrogenotrophic microbes, which exhibit segmental and interindividual variation in abundance and diversity.  相似文献   

19.
Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith–Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.  相似文献   

20.
The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome''s long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号