首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yessotoxin (YTX) was detected in an algal sample and two mussel samples (0.07–0.10 μg g−1) collected from Scripps Pier in La Jolla, California during a bloom of Lingulodinium polyedrum. Mussel samples collected from Monterey Bay, California also contained measurable YTX (levels up to 0.06 μg g−1) in samples obtained during a 6-month (weekly) sampling period. Gonyaulax spinifera and L. polyedrum were identified in background concentrations in Monterey Bay during the time of contamination. An algal sample from Washington coastal waters collected during non-bloom conditions also contained YTX, possibly originating from Protoceratium reticulatum.Three strains of L. polyedrum (CCMP1931, CCMP1936, 104A) isolated from southern California coastal waters and one strain of G. spinifera (CCMP409) isolated from Maine were tested for YTX production using two methods, competitive ELISA and liquid chromatography–mass spectrometry (LC–MS). The ELISA method detected YTX in the particulate phase in two of three L. polyedrum strains. The LC–MS method did not detect YTX in the particulate or dissolved phase of any of the strains.To our knowledge, this is the first study to test and confirm YTX in environmental samples from California and Washington coastal waters. It is highly likely that L. polyedrum was responsible for the YTX contamination in the southern California samples. Future research needs to conclusively determine the biological origin(s) of YTX contamination in central California and Washington coastal waters.  相似文献   

2.
Abundances of Pseudo-nitzschia spp. and concentrations of particulate domoic acid (DA) were determined in the Southern California Bight (SCB) along the coasts of Los Angeles and Orange Counties during spring and summer of 2003 and 2004. At least 1500 km2 were affected by a toxic event in May/June of 2003 when some of the highest particulate DA concentrations reported for US coastal waters were measured inside the Los Angeles harbor (12.7 μg DA L−1). Particulate DA levels were an order of magnitude lower in spring of 2004 (February and March), but DA concentrations per cell at several sampling stations during 2004 exceeded previously reported maxima for natural populations of Pseudo-nitzschia (mean = 24 pg DA cell−1, range = 0–117 pg DA cell−1). Pseudo-nitzschia australis dominated the Pseudo-nitzschia assemblage in spring 2004. Overall, DA-poisoning was implicated in >1400 mammal stranding incidents within the SCB during 2003 and 2004. Ancillary physical and chemical data obtained during our regional surveys in 2004 revealed that Pseudo-nitzschia abundances, particulate DA and cellular DA concentrations were inversely correlated with concentrations of silicic acid, nitrogen and phosphate, and to specific nutrient ratios. Particulate DA was detected in sediment traps deployed at 550 and 800 m depth during spring of 2004 (0.29–7.6 μg DA (g sediment dry weight)−1). The highest DA concentration in the traps was measured within 1 week of dramatic decreases in the abundances of Pseudo-nitzschia in surface waters. To our knowledge these are the deepest sediment trap collections from which DA has been detected. Sinking of the spring Pseudo-nitzschia bloom may constitute a potentially important link between DA production in surface waters and benthic communities in the coastal ocean near Los Angeles. Our study indicates that toxic blooms of Pseudo-nitzschia are a recurring phenomenon along one of the most densely populated coastal stretches of the SCB and that the severity and magnitude of these events can be comparable to or greater than these events in other geographical regions affected by domoic acid.  相似文献   

3.
Sediment samples from Scottish coastal sites, taken over the last 9 years, were stored in closed containers at 5C. Slurry cultures were used to determine the survival of phytoplankton in these sediments. A range of diatom and dinoflagellate species survived for at least 27 months in these stored samples. A number of species grew for which no resting stage has yet been described: Thalassiosira angulata, T.pacifica, T.punctigera, T.eccentrica, T.minima and T.anguste-lineata. Notable results were survival times of 73 months for Skeletonema costatum, 96 months for Chaetoceros socialis, C.didymus and C.diadema, 109 months for Scrippsiella sp. and 112 months for Lingulodinium polyedrum. A single sample was stored and repeatedly cultured for diatoms over a period of 16 months. The number of species cultured from the sediment declined over this time. Lingulodinium polyedrum cysts isolated from sediments collected at least 18 months previously gave a hatching success of 97%, and cysts isolated from a 9-year-old sample gave a hatching success of 3%. The study indicated the potential importance of coastal sediments as a source of phytoplankton to their overlying waters. The validity of using marine planktonic diatoms and dinoflagellates for modelling geological events is discussed.   相似文献   

4.
Although nucleosomes and histones are lacking in dinoflagellate nuclei, small basic histone‐like proteins have been reported, but their function(s) is unknown. In this study we cloned and sequenced a gene for a histone‐like protein from the dinoflagellate Lingulodinium polyedrum (Stein) Dodge (HLp) (formerly Gonyaulax polyedra Stein) and investigated its post‐translational modification and DNA‐binding activities. HLp appears to be acetylated in L. polyedrum, and we identified several L. polyedrum proteins that possess histone acetyltransferase activity and may be responsible for this modification. HLp binds weakly to L. polyedrum DNA but to certain specific sequences with higher affinity, consistent with its having a regulatory function.  相似文献   

5.
Harmful blooms formed by species of the dinoflagellate Cochlodinium have caused massive fish kills and substantial economic losses in the Pacific Ocean. Recently, prominent blooms of Cochlodinium have occurred in central and southern California (2004–2008), and Cochlodinium cells are now routinely observed in microscopical analysis of algal assemblages from Californian coastal waters. The first documented economic loss due to a Cochlodinium bloom in California occurred in Monterey Bay and resulted in the mortality of commercially farmed abalone. Increasing occurrences of Cochlodinium blooms, the fact that these cells preserve poorly using standard techniques, and the difficulty of identifying preserved specimens using morphological criteria make Cochlodinium species prime candidates for the development of a quantitative real‐time polymerase chain reaction (qPCR) approach. The 18S rDNA gene sequenced from Cochlodinium cells obtained from California coastal waters, as well as GenBank sequences of Cochlodinium, were used to design and test a Molecular Beacon® approach. The qPCR method developed in this study is species specific, sensitive for the detection of C. fulvescens that has given rise to the recent blooms in the eastern Pacific Ocean, and spans a dynamic abundance range of seven orders of magnitude. Initial application of the method to archived field samples collected during blooms in Monterey Bay revealed no statistically significant correlations between gene copy number and environmental parameters. However, the onset of Cochlodinium blooms in central California was consistent with previously reported findings of correlations to decreased surface temperature and increased inputs of nitrogenous nutrients.  相似文献   

6.
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.  相似文献   

7.
Domoic acid in phytoplankton and fish in San Diego, CA, USA   总被引:1,自引:0,他引:1  
We provide the first confirmation of the presence of domoic acid (DA) in phytoplankton and fish in San Diego, California, based on samples collected between 1 October 2003 and 29 September 2004. In February 2004, we detected DA in seawater samples collected off the Scripps Pier and also in coastal samples as far as 120 km to the north. At the same time we observed populations of toxic Pseudo-nitzschia australis and Pseudo-nitzschia multiseries as high as 7.7 × 104 cells l−1. Elevated concentrations of DA and abundances of the toxic species were also found further north in coastal waters of Orange County and, to a lesser extent, in southern Los Angeles County. DA concentrations in the viscera from four species of fish obtained at or near the Scripps Pier ranged from low to above the critical level for public safety. Samples of mussel tissues from the Scripps Pier analyzed by the State Department of Health Services contained low but detectable amounts of DA. Concomitant sea lion strandings from San Diego to Malibu Beach may be related to the presence of DA. DA in tissue from mussels and fish provides evidence for the local transfer of DA from an algal source to higher trophic levels in San Diego coastal waters.  相似文献   

8.
An organic-walled dinoflagellate cyst analysis was carried out on 53 surface sediment samples from West Africa (17–6°N) to obtain insight in the relationship between their spatial distribution and hydrological conditions in the upper water column as well as marine productivity in the study area.Multivariate analysis of the dinoflagellate cyst relative abundances and environmental parameters of the water column shows that sea-surface temperature, salinity, marine productivity and bottom water oxygen are the factors that relate significantly to the distribution patterns of individual species in the region.The composition of cyst assemblages and dinoflagellate cyst concentrations allows the identification of four hydrographic regimes; 1) the northern regime between 17 and 14°N characterized by high productivity associated with seasonal coastal upwelling, 2) the southern regime between 12 and 6°N associated with high-nutrient waters influenced by river discharge 3) the intermediate regime between 14 and 12°N influenced mainly by seasonal coastal upwelling additionally associated with fluvial input of terrestrial nutrients and 4) the offshore regime characterized by low chlorophyll-a concentrations in upper waters and high bottom water oxygen concentrations.Our data show that cysts of Polykrikos kofoidii, Selenopemphix quanta, Dubridinium spp., Echinidinium species, cysts of Protoperidinium monospinum and Spiniferites pachydermus are the best proxies to reconstruct the boundary between the NE trade winds and the monsoon winds in the subtropical eastern Atlantic Ocean. The association of Bitectatodinium spongium, Lejeunecysta oliva, Quinquecuspis concreta, Selenopemphix nephroides, Trinovantedinium applanatum can be used to reconstruct past river outflow variations within this region.  相似文献   

9.
Monitoring of harmful algal bloom (HAB) species in coastal waters is important for assessment of environmental impacts associated with HABs. Co-occurrence of multiple cryptic species such as toxic dinoflagellate Ostreopsis species make reliable microscopic identification difficult, so the employment of molecular tools is often necessary. Here we developed new qPCR method by which cells of cryptic species can be enumerated based on actual gene number of target species. The qPCR assay targets the LSU rDNA of Ostreopsis spp. from Japan. First, we constructed standard curves with a linearized plasmid containing the target rDNA. We then determined the number of rDNA copies per cell of target species from a single cell isolated from environmental samples using the qPCR assay. Differences in the DNA recovery efficiency was calculated by adding exogenous plasmid to a portion of the sample lysate before and after DNA extraction followed by qPCR. Then, the number of cells of each species was calculated by division of the total number of rDNA copies of each species in the samples by the number of rDNA copies per cell. To test our procedure, we determined the total number of rDNA copies using environmental samples containing no target cells but spiked with cultured cells of several species of Ostreopsis. The numbers estimated by the qPCR method closely approximated total numbers of cells added. Finally, the numbers of cells of target species in environmental samples containing cryptic species were enumerated by the qPCR method and the total numbers also closely approximated the microscopy cell counts. We developed a qPCR method that provides accurate enumeration of each cryptic species in environments. This method is expected to be a powerful tool for monitoring the various HAB species that occur as cryptic species in coastal waters.  相似文献   

10.
Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various flow conditions was determined for the red‐tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge. Cell division and mortality were determined by direct observation of isolated cells in 0.5‐mL cultures that were shaken to generate unquantified fluid shear. Larger volume cultures were exposed to quantified laminar shear in Couette‐flow chambers (0.004–0.019 N·m ? 2 shear stress) and to unquantified flow in shaken flasks. In these larger cultures, cell division frequency was calculated from flow cytometric measurements of DNA·cell?1. The mechanism by which shear inhibits net growth of L. polyedrum depends on shear stress level and growth conditions. Observations on the isolated cells showed that shaking inhibited growth by lowering cell division without increased mortality. Similar results were found for early exponential‐phase cultures exposed to the lowest experimental shear stress in Couette‐flow chambers. However, mortality occurred when a late exponential‐phase culture was exposed to the same low shear stress and was inferred to occur in cultures exposed to higher shear stresses. Elevated mortality in those treatments was confirmed using behavioral, morphological, and physiological assays. The results predict that cell division in L. polyedrum populations will be inhibited by levels of oceanic turbulence common for near‐surface waters. Shear‐induced mortality is not expected unless shear‐stress levels are unusually high or when cellular condition resembles late exponential/stationary phase cultures.  相似文献   

11.
Athecate dinoflagellate Karlodinium veneficum is a universal toxic species possessing karlotoxins recognized especially as ichthyotoxic as well as cytotoxic and hemolytic. Blooms of K. veneficum, both single-species or accompanied with other species, occurred more frequently worldwide in recent years, including the coastal region of China. Normally, K. veneficum present in relatively low abundance in phytoplankton communities in estuary regions. Being small and difficult to identify with light microscopy, it has been ignored for a long time till its blooming and toxins being confirmed. How it presents in background level and what is its relationship with critical geological and hydrological environment factors are basically not clear. In this study, the paper reports the application of a real-time quantitative PCR (qPCR) method to investigate the abundance and distribution of K. veneficum in the coastal waters of Xiangshan Bay in the East China Sea (ECS), a typical bay area of harmful algae blooms and heavily affected by anthropogenic activities. The real-time qPCR assay came out being an efficient method at detecting even low cell densities of K. veneficum of different genotypes. A total of 38 field samples of surface (0.5 m) and bottom water (9–100 m in depth) were analyzed and 12 samples were found positive for K. veneficum. At least 3 genotypes of K. veneficum present in this region. Temperatures in sites of K. veneficum positive ranged from 21.7 to 23.4 °C, and salinity levels were between 21.1 and 26.3. The K. veneficum distributed quite extensively in the waters of Xiangshan Bay, cell abundance varied from a low of 4 cells/L to a maximum of 170 cells/L. Most of the samples containing K. veneficum were collected from bottom water in different sites. At three of the 19 sampling sites, K. veneficum was detected in both surface and bottom water samples. Especially at sampling site near Beilun port, where the water is typically muddy with low transparency, relative high cell numbers of K. veneficum were found in both surface and bottom waters. Mixotrophy and vertical migration of K. veneficum could be important eco-physiological factors to consider in terms of understanding these distribution characteristics. The ideal conditions for K. veneficum growth and aggregation in this area still needs further study.  相似文献   

12.
Red tides by the ichthyotoxic dinoflagellate Cochlodinium polykrikoides have caused large scaled mortality of fish and great loss in aquaculture industry in many countries. Detecting and quantifying the abundance of this species are the most critical step in minimizing the loss. The conventional quantitative real-time PCR (qPCR) method has been used for quantifying the abundance of this species. However, when analyzing > 500 samples collected during huge C. polykrikoides red tides in South Sea of Korea in 2014, this conventional method and the previously developed specific primer and probe set for C. polykrikoides did not give reasonable abundances when compared with cell counting data. Thus improved qPCR methods and a new specific primer and probe set reflecting recent discovery of 2 new ribotypes have to be developed. A new species-specific primer and probe set for detecting all 3 ribotypes of C. polykrikoides was developed and provided in this study. Furthermore, because the standard curve between cell abundance and threshold cycle value (Ct) is critical, the efficiencies of 4 different preparation methods used to determine standard curves were comparatively evaluated. The standard curves were determined by using the following 4 different preparations: (1) extraction of DNA from a dense culture of C. polykrikoides followed by serial dilution of the extracted DNA (CDD method), (2) extraction of DNA from each of the serially diluted cultures with different concentrations of C. polykrikoides cultures (CCD method), (3) extraction of DNA from a dense field sample of C. polykrikoides collected from natural seawater and then dilution of the extracted DNA in serial (FDD method), and (4) extraction of DNA from each of the serially diluted field samples having different concentrations of C. polykrikoides (FCD method). These 4 methods yielded different results. The abundances of C. polykrikoides in the samples collected from the coastal waters of South Sea, Korea, in 2014–2015, obtained using the standard curves determined by the CCD and the FCD methods, were the most similar (0.93–1.03 times) and the second closest (1.16–1.33 times) to the actual cell abundances obtained by enumeration of cells. Thus, our results suggest that the CCD method is a more effective tool to quantify the abundance of C. polykrikoides than the conventional method, CDD, and the FDD and FCD methods.  相似文献   

13.
A sudden and nearly synchronous emergence of the red tide forming dinoflagellate Cochlodinium along more than 800 km of California coastline was initially observed in late summer 2004. Thereafter high cell concentrations have been detected on an annual basis. Here, we present quantitative and semi-quantitative data indicating that Cochlodinium was uncommon in the phytoplankton community in California prior to 2004 and is now persisting as a more regular component and one that seasonally can cause red tides. The quantitative portion of this study was primarily conducted in Monterey Bay, where cell densities reached at least 6 × 104 cells L−1 during the initial outbreak. A semi-quantitative comparison of California coastal counties by the California Department of Health Services (CDHS) was also made: of the 15 counties surveyed (most with multiple sites per county), cells were detected only from Los Angeles County in the south to San Mateo County in the central region (seven counties), but not in the northern part of the state (six counties). Two counties in the central region of the state, San Luis Obispo and Santa Cruz, displayed intense and frequent periods of elevated Cochlodinium cell abundances. Although not observed in the state-wide CDHS survey, we occasionally found cells in San Diego County with densities up to 2.7 × 104 cells L−1. Though these colonial dinoflagellates have been recognized in California for over 80 years, with several “blooms” recorded prior to 2004, the species’ geographic range and abundance in recent years suggest significant shifts in the nearshore phytoplankton community of this region of the eastern Pacific.  相似文献   

14.
The dinoflagellate Peridinium cf. quinquecorne Abé forms red tide-like blooms in eutrophic shallow waters in the Philippines. The organism moves into a distinct near-surface layer when intensive solar radiation occurs, but only during the incoming tide. Shortly before high tide, regardless of light levels, the dinoflagellates seem to disappear. Simple experiments show that once intensive radiation has been reduced Peridinium quinquecorne moves out of the water column and attaches itself to solid objects away from the light. The morphology of the organism, especially as related to attachment, was studied through SEM. Its high swimming velocity and the reaction to radiation and tidal changes are described. The possibility that, superimposed on its reaction to light, this dinoflagellate may follow intrinsic tide-dependent oscillations is discussed.  相似文献   

15.
The impact of benthic deposit feeders on marine dinoflagellate cysts was studied by adding a concentrated natural Swedish cyst assemblage to sediment with different deposit feeders in replicate 4-l aquaria. The deposit feeders used were the bivalve Abra nitida, the echinoderm Amphiura filiformis, and the polychaetes Melinna cristata and Nereis diversicolor. These species occur naturally near the Swedish west coast and were selected to represent different ways of feeding. The results showed a significant relative decrease of unfossilizable cyst species; whereas, the common fossilizable species Lingulodinium polyedrum significantly increased in the cyst assemblage after grazing. This work suggests that differences in dinoflagellate cyst compositions can in part be caused by different animal grazing behaviors.  相似文献   

16.
The suitability of the ‘artificial substrate’ method, i.e. standardized surfaces of fiberglass screens, for the quantification of four benthic harmful algal bloom (BHAB) dinoflagellates (Gambierdiscus, Ostreopsis, Prorocentrum and Coolia) was tested relative to estimates from natural macroalgal substrates. Sampling took place in a variety of intertidal and subtidal coastal habitats under different water motion conditions, at depths from 1 to 7 m, in two archipelagos of the Macaronesia region: The Canary Islands and Cape Verde. An immersion time of 24 h was sufficient to adequately estimate dinoflagellate abundances. Seven replicates were established as the ideal replication level, considering both reproducibility and sampling effort. In most cases, cell abundances of the four dinoflagellate genera showed lower variability on artificial substrates than on macroalgae, leading to more reliable estimates of abundances. The ratio of mean cell abundances on artificial substrates to mean cell abundances on macroalgae highly varied among sampling sites for each genus. This was especially true for Ostreopsis and Coolia. Thus, given the potentially harmful nature of benthic dinoflagellates, the transformation of abundances expressed as cells g−1 of macroalgae to abundances expressed as cells cm-2 is risky, and it should not be attempted in monitoring and management programs of harmful microalgae. In summary, results of this study support the use of artificial substrates in monitoring programs of BHAB dinoflagellates, while the risks of using macroalgae are stressed.  相似文献   

17.
In recent years, two new approaches have been introduced in genetic studies of phytoplankton species. One is the application of highly polymorphic microsatellite markers, which allow detailed population genetic studies; the other is the development of methods that enable the direct genetic characterization of single cells as an alternative to clonal cultures. The aim of this study was to combine these two approaches in a method that would allow microsatellite genotyping of single phytoplankton cells, providing a novel tool for high‐resolution population genetic studies. The dinoflagellate species Lingulodinium polyedrum (F. Stein) J. D. Dodge was selected as a model organism to develop this novel approach. The method we describe here is based on several key developments: (i) a simple and efficient DNA extraction method for single cells, (ii) the characterization of microsatellite markers for L. polyedrum, (iii) a protocol for the species identification of single cells through the analysis of partial rRNA gene sequences, and (iv) a two‐step multiplex PCR protocol for the simultaneous amplification of microsatellite markers and partial rRNA gene sequences from single cells. Our protocol allowed the amplification of up to six microsatellite loci together with either the complete ITS1‐5.8S‐ITS2 region or a partial 18S region of the ribosomal gene of L. polyedrum from single motile cells and resting cysts. This article describes and evaluates the developed approach and discusses its significance for population genetic studies of L. polyedrum and other phytoplankton species.  相似文献   

18.
A 3 year study (2000–2002) in Barnegat Bay-Little Egg Harbor (BB/LEH), New Jersey (USA), was conducted by the New Jersey Department of Environmental Protection, Division of Science Research and Technology (DSRT) in cooperation with several partners to assess brown tide blooms in coastal waters in NJ. Water samples were collected by boat and helicopter at coastal stations from 2000 to 2002 along with field measurements. Aureococcus anophagefferens were enumerated and associated environmental factors were analyzed. A. anophagefferens abundances were classified using the Brown Tide Bloom Index and mapped, along with salinity and temperature parameters, to their geo-referenced location using the ArcView GIS. The highest A. anophagefferens abundances (>106 cells ml−1), including category 3 blooms (≥200,000 cells ml−1) and category 2 blooms (≥35,000 to ≤200,000 cells ml−1), recurred during each of the 3 years of sampling and covered significant geographic areas of the estuary, especially in Little Egg Harbor. While category 3 blooms were generally associated with warmer water temperatures (>16 °C) and higher salinity (>25–26 ppt), these factors were not sufficient alone to explain the timing or distribution of A. anophagefferens blooms. There was no significant relationship between brown tide abundances and dissolved organic nitrogen measured in 2002 but this was consistent with other studies. Extended drought conditions, with corresponding low freshwater inputs and elevated bay water salinities, occurring during this time were conducive to blooms. A. anophagefferens abundances were well above the reported levels that have been reported to cause negative impacts on shellfish. It was shown that over 50% of the submerged aquatic vegetation (SAV) habitat located in Barnegat Bay/Little Egg Harbor was categorized as having a high frequency of category 2 or 3 blooms for all 3 years.  相似文献   

19.
Tidal influences on appendicularian densities were observedat North Inlet, South Carolina, by sampling along a transectwhich ran from a tidal creek to a station 5 km offshore. Oikopleuradioica was the dominant species in North Inlet, while Oikopleuralongicauda and Appendicularia sicula contributed marginallyto appendicularian numbers during midsummer and fall. A strongtide-dependent density pattern was clear for inshore waters.Low-tide densities of all three species showed a dramatic increasein an offshore direction. At high tide, densities were similarbetween all stations for O. dioica, while O. longicauda andA. sicula showed a less pronounced density gradient than atlow tide. Population densities within the inlet were greateron spring tides than neap tides and tidal influences were generallyconsistent between seasons. Appendicularians enter the estuaryin densities as high as 20 072 animals m–3, indicatingthat tidal currents may be an important mechanism for exchangeof appendicularian biomass between coastal and estuarine waters. 1Present address: Allan Hancock Foundation, University of SouthernCalifornia, Los Angeles, CA 90007, USA.  相似文献   

20.
Cochlodinium polykrikoides (p) is a planktonic dinoflagellate known to produce red tides responsible for massive fish kills and thereby serious economic loss in Korean coastal waters, particularly during summer and fall seasons. The present study involved analyzing chlorophyll-a (Chl-a) from SeaWiFS ocean color imagery collected over the period 1998–2002 to understand the spatial and temporal aspects of C. polykrikoides blooms that occurred in the enclosed and semi-enclosed bays of the Korean Southeast Sea. NOAA-AVHRR data were used to derive Sea Surface Temperature (SST) to elucidate physical factors affecting the spatial distribution and abundance of C. polykrikoides blooms. The time series of SeaWiFS-derived Chl-a gave an impression that recent red tide events with higher concentrations appeared to span more than 8 weeks during summer and fall seasons and were widespread in most of the Korean Southeast Sea coastal bays and neighboring oceanic waters. Coupled eutrophication and certain oceanic processes were thought to give rise to the formation of massive C. polykrikoides blooms with cell abundances ranging from 1000 to 30,000 cells ml−1, causing heavy mortalities of aquaculture fish and other marine organisms in these areas. Our analysis indicated that Chl-a estimates from SeaWiFS ocean color imagery appeared to be useful in demarcating the locality, spatial extent and distribution of these blooms, but unique identification of C. polykrikoides from non-bloom and sediment dominated waters remains unsuccessful with this data alone. Thus, the classical spectral enhancement and classification techniques such as Forward Principal Component Analysis (FPCA) and Minimum Spectral Distance (MSD) to uniquely identify and better understand C. polykrikoides blooms characteristics from other optical water types were attempted on both low spatial resolution SeaWiFS ocean color imagery and high spatial resolution Landsat-7 ETM+ imagery. Application of these techniques could capture intricate and striking patterns of C. polykrikoides blooms from surrounding non-bloom and sediment dominated waters, providing improved capability of detecting, predicting and monitoring C. polykrikoides bloom in such optically complex waters. The result obtained from MSD classification showed that retrieval of C. polykrikoides bloom from the mixed phase of this bloom with turbid waters was not feasible with the SeaWiFS ocean color imagery, but feasible with Landsat-7 ETM+ imagery that provided more accurate and comparable spatial C. polykrikoides patterns consistent with in situ observations. The dense phase of the bloom estimated from these imageries occupied an area of more than 25 km2 around the coastal bays and the mixed phase extended over several hundreds kilometers towards the Southeast Sea offshore due to exchange of water masses caused by coastal and oceanic processes. Sea surface temperature analyzed from AVHRR infrared data captured the northeastward flow of Tsushima Warm Current (TWC) waters that provided favorable environmental conditions for the rapid growth and subsequent southward initiation of C. polykrikoides blooms in hydrodynamically active regions in the Korean Southeast Sea offshore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号