首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Bacillus subtilis NRC33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30°C. The effect of different nitrogen sources showed that baker’s yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO4 was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1000 μg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30°C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.  相似文献   

2.
Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final levan profile in reactions with sucrose as substrate.  相似文献   

3.
An investigation was conducted to isolate, and characterise the extracellular sucrases of Zymomonas mobilis UQM 2716. Levansucrase (EC 2.4.1.10) was the only extracellular sucrase produced by this organism. This enzyme was responsible for sucrose hydrolysis, levan formation, and oligosaccharide production. It had a molecular mass of 98 kDa, a Michaelis constant (K m) of 64 mm, and a pH optimum of 5.5. It was inhibited by glucose, but not by fructose, ethanol, sorbitol, NaCl, TRIS or ethylenediaminetetraacetic acid (EDTA). The formation of levan was the principal reaction catalysed by this enzyme at low temperatures. However, levan formation was thermolabile, being irreversibly lost when levansucrase was heated to 35°C. S This did not effect sucrose hydrolysis or oligosaccharide formation, which were optimal at 45°C. Sucrose concentration greatly influenced the type of acceptor molecule used in the transfructosylation reactions catalysed by levansucrase. At low sucrose concentration, the predominant reaction catalysed was the hydrolysis of sucrose to free glucose and fructose. At high sucrose concentrations, oligosaccharide production was the major reaction catalysed.  相似文献   

4.
Bacillus sp. 3B6, bacterium isolated from cloud water, was incubated on sucrose for exopolysaccharide production. Dialysis of the obtained mixture (MWCO 500) afforded dialyzate (DIM) and retentate (RIM). Both were separated by size exclusion chromatography. RIM afforded eight fractions: levan exopolysaccharide (EPS), fructooligosaccharides (FOSs) of levan and inulin types with different degrees of polymerization (dp 2–7) and monosaccharides fructose:glucose = 9:1. Levan was composed of two components with molecular mass ∼3500 and ∼100 kDa in the ratio 2.3:1. Disaccharide fraction contained difructose anhydride DFA IV. 1-Kestose, 6-kestose, and neokestose were identified as trisaccharides in the ratio 2:1:3. Fractions with dp 4–7 were mixtures of FOSs of levan (2,6-βFruf) and inulin (1,2-βFruf) type. DIM separation afforded two dominant fractions: monosaccharides with fructose: glucose ratio 1:3; disaccharide fraction contained sucrose only. DIM trisaccharide fraction contained 1-kestose, 6-kestose, and neokestose in the ratio1.5:1:2, penta and hexasaccharide fractions contained FOSs of levan type (2,6-βFruf) containing α-glucose. In the pentasaccharide fraction also the presence of a homopentasaccharide composed of 2,6-linked βFruf units only was identified. Nystose, inulin (1,2-βFruf) type, was identified as DIM tetrasaccharide. Identification of levan 2,6-βFruf and inulin 1,2-βFruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in Bacillus sp. 3B6.  相似文献   

5.
Fructan: fructan fructosyl transferase (FFT, EC 2.4.1.100) was purified from chicory (Cichorium intybus L. var. foliosum cv. Flash) roots by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, and anion- and cation-exchange chromatography. This protocol produced a 60-fold purification and a specific activity of 14.5 mol·(mg protein) –1·min–1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On sodium dodecyl sulfatepolyacrylamide gel electrophoresis and mass spectrometry, 52-kDa and 17-kDa fragments were found, suggesting that the enzyme was a heterodimer. Optimal activity was found between pH 5.5 and 6.5. The enzyme used 1-kestose, 1,1-nystose, oligofructan and commercial chicory root inulin (degree of polymerization 10) as donors and acceptors. Sucrose was the best acceptor but could not be used as a donor. However, at higher concentrations sucrose acted as a competitive inhibitor for donors of FFT. 1-Kestose was the most efficient and 1,1-nystose the least efficient donor. The purified enzyme exhibited -fructosidase activity, specially at higher temperatures and lower substrate concentrations. The synthesis of fructans from 1-kestose decreased at higher temperatures (5–50°C). Therefore enzyme assays were performed at 0°C. The same fructan oligosaccharides, with a distribution similar to that observed in vivo, were obtained upon incubation of the enzyme with sucrose and commercial chicory root inulin.Abbreviations Con A concanavalin A - DP degree of polymerization - FFT fructan: fructan fructosyl transferase - Fru fructose - Glc glucose - Kes 1-kestose - MALDI-TOF MS matrix-assisted laser desorption ionisation time of flight mass spectrometry - Nys 1,1-nystose - pI isoelectric point - SST sucrose: sucrose fructosyl transferase - Suc sucrose The authors would like to thank E. Nackaerts for valuable assistance. W. Van den Ende is also grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants. P. Verhaert is a research associate of the NFSR. This work was also supported by grant OT/91/18 from the Research Fund K.U. Leuven.  相似文献   

6.
The ethanol and temperature effects on the ratio between Zymomonas mobilis 113S extracellular levansucrase activities were studied using fermentation broth supernatant, ??levan?Clevansucrase?? sediment precipitated by ethanol and highly purified enzyme. The fructooligosaccharide (FOS) production at different temperatures in the presence of ethanol was investigated. An ethanol increases FOS biosynthesis activity part of levansucrase. Especially, this effect was pronounced at lower temperatures (35?C40?°C) and using purified levansucrase. The inverse relationship between temperature and ratio synthetic activity/total activity of levansucrase was found. The FOS composition containing mostly 1-kestose, 6-kestose, and neokestose obtained in the presence of different ethanol concentrations was found relative constant, while the changes in the sucrose concentration and temperature gave slight changes in the ratio between 1-kestose and 6-kestose.  相似文献   

7.
Summary Bacillus polymyxa (NRRL-18475) produced a levan-type fructan (B, 26 fructofuranoside) when grown on sucrose, sugarcane juice, and sugarbeet molasses. The organism converted about 46% of the fructose moiety of sucrose to levan when grown on sucrose medium, however, the yields of levan from sugarcane juice and beet molasses were much less than sucrose solution. Such sugarcane juice and beet molasses can be made a good substrate for levan production by various modifications. Adding peptone to sugarcane juice or passing beet molasses through a column of gel filtration media improved levan yield to a level almost comparable to that obtained from sucrose.  相似文献   

8.
Leuconostoc mesenteroides B-512 FMC produces dextran and levan using sucrose. Because of the industrial importance of dextrans and oligosaccharides synthesized by dextransucrase (one of glycansucrases from L. mesenteroides), much is known about the dextransucrase, including expression and regulation of gene. However, no detailed report about levansucrase, another industrially important glycansucrase from L. mesenteroides, and its gene was available. In this paper, we report the first-time isolation and molecular characterization of a L. mesenteroides levansucrase gene (m1ft). The gene m1ft is composed of 1272-bp nucleotides and codes for a protein of 424 amino acid residues with calculated molecular mass of 47.1 kDa. The purified protein was estimated to be about 51.7 kDa including a His-tag based on SDS-PAGE. It showed an activity band at 103 kDa on a non-denaturing SDS-PAGE, indicating a dimeric form of the active M1FT. M1FT levan structure was confirmed by NMR and dot blot analysis with an anti-levan-antibody. M1FT converted 150 mM sucrose to levan (18%), 1-kestose (17%), nystose (11%) and 1,1,1-kestopentaose (7%) with the liberation of glucose. The M1FT enzyme produced erlose [O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->2)-beta-D-fructofuranoside] as an acceptor product with maltose. The optimum temperature and pH of this enzyme for levan formation were 30 degrees C and pH 6.2, respectively. M1FT levansucrase activity was completely abolished by 1 mM Hg2+ or Ag2+. The Km and Vmax values for levansucrase were calculated to be 26.6 mM and 126.6 micromol min-1 mg-1.  相似文献   

9.
The polysaccharide levan was synthesized in a solidified agar medium containing sucrose as a source of fructose. The biosynthesis was achieved by the enzyme levansucrase (2,6-fructan–d-glucose 6-fructosyltransferase, EC 2.4.1.10), a small quantity of which was placed in circular wells cut in the agar gel. The enzyme slowly diffused through the agar–sucrose medium and the synthesis of levan was observed as circular white areas, the size of which was dependent on the time of incubation and the concentration of enzyme used.  相似文献   

10.
Levan is a homopolymer of fructose which can be produced by the transfructosylation reaction of levansucrase (EC 2.4.1.10) from sucrose. In particular, levan synthesized by Zymomonas mobilis has found a wide and potential application in the food and pharmaceutical industry. In this study, the immobilization of Z. mobilis levansucrae (encoded by levU) was attempted for repeated production of levan. By fusion levU with the chitin-binding domain (ChBD), the hybrid protein was overproduced in a soluble form in Escherichia coli. After direct absorption of the protein mixture from E. coli onto chitin beads, levansucrase tagged with ChBD was found to specifically attach to the affinity matrix. Subsequent analysis indicated that the linkage between the enzyme and chitin beads was substantially stable. Furthermore, with 20% sucrose, the production of levan was enhanced by 60% to reach 83 g/l using the immobilized levansucrase as compared to that by the free counterpart. This production yield accounts for 41.5% conversion yield (g/g) on the basis of sucrose. After all, a total production of levan with 480 g/l was obtained by recycling of the immobilized enzyme for seven times. It is apparent that this approach offers a promising way for levan production by Z. mobilis levansucrase immobilized on chitin beads.  相似文献   

11.
The effect was investigated of sucrose concentration on sucrose metabolism and on the formation of exopolysaccharide (EPS) by Lactobacillus sanfranciscensis LTH2590 in pH-controlled fermentations with sucrose concentrations ranging from 20 to 160 g liter−1. The EPS production increased and the relative sucrose hydrolysis activity decreased by increasing the sucrose concentration in the medium. The carbon recovery decreased from 95% at a sucrose concentration of 30 g liter−1 to 58% at a sucrose concentration of 160 g liter−1 because of the production of an unknown metabolite by L. sanfranciscensis. This metabolite was characterized as a fructo-oligosaccharide. The oligosaccharide produced by L. sanfranciscensis was purified and characterized as a trisaccharide with a glucose/fructose ratio of 1:2. The comparison of the retention time of this oligosaccharide and that of pure oligosaccharide standards using two different chromatography methods revealed that the oligosaccharide produced by L. sanfranciscensis LTH2590 is 1-kestose. Kestose production increased concomitantly with the initial sucrose concentration in the medium.  相似文献   

12.
13.
Bacillus circulans was able to produce extracellular levansucrase using sucrose as carbon source optimally at 35°C. The enzymic synthesis of levan and fructo-oligosaccharides was studied using a 50% ethanol fraction of crude extract. The molecular weight of the synthesized levan was markedly affected by sucrose concentration, the molecular weight of levan decreased with increased sucrose concentration up to 32% whereby fructo-oligosaccharides were isolated. Temperature and the reaction time clearly affected the conversion of fructose to levan with molecular weight values ranging from 10 to 38 kDa. Identification of levan indicated that fructose was the building unit of the levan obtained. Thermal and pH stabilities of B. circulans levansucrase could be improved by enzyme glycosylation using sodium metaperiodate treatment. Chemical modification provides additional points of attachment of the enzyme to the support which offered the modified enzyme greater stabilization than did the free enzyme. The modified enzyme exhibited thermal tolerance up to 50°C, where it retained 88.25% of its activity, while the free enzyme only retained 64.55% of its original activity. The half-life significantly increased from 130 min for the free enzyme to 347 min for the modified enzyme at 50°C, however, it increased from 103 min for the free enzyme to 210 min for the modified enzyme at 60°C. Other properties i.e., the response to some metal ions as well as the ability to convert higher substrate levels and tolerance to an extension of the reaction periods were also improved upon modification. Obviously, the results obtained outlined the conditions leading to the formation of important high or low molecular weight or levan and fructo-oligosaccharides suitable for different industrial applications.  相似文献   

14.
The characteristics of levan formation by different preparations of levansucrase (free and immobilized enzyme and toluene-permeabilized whole cells), derived from recombinant levansucrase from Zymomonas mobilis expressed in Escherichia coli, were investigated. The maximal yield of levan by the three preparations were similar and were about 70–80% on a fructose-released basis with sucrose as nutrient at 100 g l–1. Immobilized enzyme and toluene-permeabilized whole cells produced low molecular weight levan (2–3 × 106), as determined by HPLC while high molecular weight levan (>6 × 106) was the major product with the free levansucrase. The size of levan can thus be controlled by immobilized levansucrase and toluene-permeabilized whole cells in high yield.  相似文献   

15.
Dactylis glomerata (orchardgrass) accumulates a single series of levans and the high DP polymers might be correlated with an increased stress resistance. A single levan series could be induced in excised orchardgrass leaves, without any 1 -kestose accumulation, strongly suggesting that fructan synthesis occurs independently of 1-SST activity. This elegant excised leaf system was used to study fructan metabolism regulation as affected by environmental conditions and exogenous sugar treatments. In contrast to the well-studied barley excised leaf system, fructan biosynthesis could not be rapidly induced in the light without exogenous sugar and only a limited fructan synthesis was observed in the dark with sugar. It can be concluded that both light and sugar are needed to achieve an optimal fructan synthesis. To induce fructan biosynthesis, sucrose could be replaced by a combination of glucose and fructose. Fructans were found to be a surplus pool of sucrose when a threshold sucrose concentration is surpassed. A metabolic switch to fructan degradation was observed when induced orchardgrass leaves were incubated in the dark at 30°C. Interestingly, fructans persisted during senescence of sugar-induced orchardgrass leaves. On the longer term, these fundamental regulatory insights might help to create superior grasses for future feed and/or biomass production.  相似文献   

16.
Levansucrase is responsible for levan formation during sucrose fermentation of Zymomonas mobilis, and this decreases the efficiency of ethanol production. As thiol modifying agents decrease levan formation, a role for cysteine residues in levansucrase activity has been examined using derivatives of Z. mobilis levansucrase that carry serine substitutions of cysteine at positions 121, 151 or 244. These substitutions abolished the levan forming activity of levansucrase whilst only halving its activity in sucrose hydrolysis. Thus, polymerase and hydrolase activities of Z. mobilis levansucrase are separate and have different requirements for the enzyme's cysteine residues.  相似文献   

17.
Fructans are the major storage carbohydrate in vegetative tissues of wheat (Triticum aestivum L.). Fructan:fructan fructosyl transferase (FFT) catalyzes fructosyl transfer between fructan molecules to elongate the fructan chain. The objective of this research was to isolate this activity in wheat. Wheat (cv Caldwell) plants grown at 25°C for 3 weeks were transferred to 10°C to induce fructan synthesis. From the leaf blades kept at 10°C for 4 days, fructosyl transferase activity was purified using salt precipitation and a series of chromatographic procedures including size exclusion, anion-exchange, and affinity chromatography. The transferase activity was free from invertase and other fructan-metabolizing activities. Fructosyl transferase had a broad pH spectrum with a peak activity at 6.5. The temperature optimum was 30°C. The activity was specific for fructosyl transfer from β(2→1)-linked 1-kestose or fructan to sucrose and β(2→1) fructosyl transfer to other fructans (1-FFT). Fructosyl transfer from oligofructans to sucrose was most efficient when 1-kestose was used as donor molecule and declined as the degree of polymerization of the donor increased from 3 to 5. 1-FFT catalyzed the in vitro synthesis of inulin tetra- and penta-saccharides from 1-kestose; however, formation of the tetrasaccharide was greatly reduced at high sucrose concentration. 6-Kestose could not act as donor molecule, but could accept a fructosyl moiety from 1-kestose to produce bifurcose and a tetrasaccharide having a β(2→1) fructose attached to the terminal fructose of 6-kestose. The role of this FFT activity in the synthesis of fructan in wheat is discussed.  相似文献   

18.
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV cauliflower mosaic virus - NMR nuclear magnetic resonance We gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work.  相似文献   

19.
The enzyme sucrose: sucrose 1-fructosyltransferase was partially purified from barley leaf growth zones. Four steps (ammonium sulphate precipitation and polyethylene glycol precipitation, followed by chromatography on Concanavalin A-sepharose and hydroxylapatite) yielded a 35-fold purification. The resulting preparation of 1-SST which still contained a number of different activities related to fructan metabolism, was subjected to preparative isoelectric focusing, and sections of the gel were analysed individually for 1-SST and related activities, using sucrose and 1-kestose as substrates. This procedure yielded a 196-fold purification and revealed the presence of two isozymes of 1-SST with pI values of 4.93 and 4.99, as determined by analytical isoelectric focusing of the corresponding fractions. Both isozymes produced glucose and 1-kestose when incubated with sucrose. In addition, small amounts of 6-kestose and tetrasaccharides were formed. In particular, one of the two 1-SST isozymes yielded fructose when incubated with 1-kestose, indicating that it also acts as a fructan exohydrolase. The other isozyme exhibited less fructan exohydrolase activity. Nystose was also degraded by the fructan exohydrolase activity but less than 1-kestose, whereas 6-kestose was not a substrate for the enzyme. Incubation of both 1-SSTs with different concentrations of sucrose showed that the enzyme was not saturated even at 500 mM. As for the barley sucrose: fructan 6-fructosyltransferase, both isozymes of 1-SST yielded two polypeptide bands of molecular weight 50 and 22 kDa upon sodium dodecylsulphate polyacrylamide gel electrophoresis, suggesting their close relationship to invertase (composed of two subunits of similar size), as previously reported for other plants.  相似文献   

20.
Lactobacillus pentosus B235, which was isolated as part of the dominant microflora from a garlic containing fermented fish product, was grown in a chemically defined medium with inulin as the sole carbohydrate source. An extracellular fructan beta-fructosidase was purified to homogeneity from the bacterial supernatant by ultrafiltration, anion exchange chromatography and hydrophobic interaction chromatography. The molecular weight of the enzyme was estimated to be approximately 126 kDa by gel filtration and by SDS-PAGE. The purified enzyme had the highest activity for levan (a beta(2-->6)-linked fructan), but also hydrolysed garlic extract, (a beta(2-->1)-linked fructan with beta(2-->6)-linked fructosyl sidechains), 1,1,1-kestose, 1,1-kestose, 1-kestose, inulin (beta(2-->1)-linked fructans) and sucrose at 60, 45, 39, 12, 9 and 3%, respectively, of the activity observed for levan. Melezitose, raffinose and stachyose were not hydrolysed by the enzyme. The fructan beta-fructosidase was inhibited by p-chloromercuribenzoate, EDTA, Fe2+, Cu2+, Zn2+ and Co2+, whereas Mn2+ and Cu2+ had no effect. The sequence of the first 20 N-terminal amino acids was: Ala-Thr-Ser-Ala-Ser-Ser-Ser-Gln-Ile-Ser-Gln-Asn-Asn-Thr-Gln-Thr-Ser-Asp-Val-Val. The enzyme had temperature and pH optima at 25 degrees C and 5.5, respectively. At concentrations of up to 12% NaCl no adverse effect on the enzyme activity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号