首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dynamics of putative raft-associated proteins at the cell surface   总被引:6,自引:0,他引:6  
Lipid rafts are conceptualized as membrane microdomains enriched in cholesterol and glycosphingolipid that serve as platforms for protein segregation and signaling. The properties of these domains in vivo are unclear. Here, we use fluorescence recovery after photobleaching to test if raft association affects a protein's ability to laterally diffuse large distances across the cell surface. The diffusion coefficients (D) of several types of putative raft and nonraft proteins were systematically measured under steady-state conditions and in response to raft perturbations. Raft proteins diffused freely over large distances (> 4 microm), exhibiting Ds that varied 10-fold. This finding indicates that raft proteins do not undergo long-range diffusion as part of discrete, stable raft domains. Perturbations reported to affect lipid rafts in model membrane systems or by biochemical fractionation (cholesterol depletion, decreased temperature, and cholesterol loading) had similar effects on the diffusional mobility of raft and nonraft proteins. Thus, raft association is not the dominant factor in determining long-range protein mobility at the cell surface.  相似文献   

2.
Triglyceride-rich lipoprotein (TGRL) lipolysis may provide a proinflammatory stimulus to endothelium. Detergent-resistant plasma membrane microdomains (lipid rafts) have a number of functions in endothelial cell inflammation. The mechanisms of TGRL lipolysis-induced endothelial cell injury were investigated by examining endothelial cell lipid rafts and production of reactive oxygen species (ROS). Lipid raft microdomains in human aortic endothelial cells were visualized by confocal microscopy with fluorescein isothiocyanate-labeled cholera toxin B as a lipid raft marker. Incubation of Atto565-labeled TGRL with lipid raft-labeled endothelial cells showed that TGRL colocalized with the lipid rafts, TGRL lipolysis caused clustering and aggregation of lipid rafts, and colocalization of TGRL remnant particles on the endothelial cells aggregated lipid rafts. Furthermore, TGRL lipolysis caused translocation of low-density lipoprotein receptor-related protein, endothelial nitric oxide synthase, and caveolin-1 from raft regions to nonraft regions of the membrane 3 h after treatment with TGRL lipolysis. TGRL lipolysis significantly increased the production of ROS in endothelial cells, and both NADPH oxidase and cytochrome P-450 inhibitors reduced production of ROS. Our studies suggest that alteration of lipid raft morphology and composition and ROS production could contribute to TGRL lipolysis-mediated endothelial cell injury.  相似文献   

3.
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.  相似文献   

4.
Kahya N  Brown DA  Schwille P 《Biochemistry》2005,44(20):7479-7489
Much attention has recently been drawn to the hypothesis that cellular membranes organize in functionalized platforms called rafts, enriched in sphingolipids and cholesterol. The notion that glycosylphosphatidylinositol (GPI)-anchored proteins are strongly associated with rafts is based on their insolubility in nonionic detergents. However, detergent-based methodologies for identifying raft association are indirect and potentially prone to artifacts. On the other hand, rafts have proven to be difficult to visualize and investigate in living cells. A number of studies have demonstrated that model membranes provide a valuable tool for elucidating some of the raft properties. Here, we present a model membrane system based on domain-forming giant unilamellar vesicles (GUVs), in which the GPI-anchored protein, human placental alkaline phosphatase (PLAP), has been functionally reconstituted. Raft morphology, protein raft partitioning, and dynamic behavior have been characterized by fluorescence confocal microscopy and fluorescence correlation spectroscopy (FCS). Approximately 20-30% of PLAP associate with sphingomyelin-enriched domains. The affinity of PLAP for the liquid-ordered (l(o)) phase is compared to that of a nonraft protein, bacteriorhodopsin. Next, detergent extraction was carried out on PLAP-containing GUVs as a function of temperature, to relate the lipid and protein organization in distinct phases of the GUVs to the composition of detergent resistant membranes (DRMs). Finally, antibody-mediated cross-linking of PLAP induces a shift of its partition coefficient in favor of the l(o) phase.  相似文献   

5.
Several simplified membrane models featuring coexisting liquid disordered (Ld) and ordered (Lo) lipid phases have been developed to mimic the heterogeneous organization of cellular membranes, and thus, aid our understanding of the nature and functional role of ordered lipid-protein nanodomains, termed "rafts". In spite of their greatly reduced complexity, quantitative characterization of local lipid environments using model membranes is not trivial, and the parallels that can be drawn to cellular membranes are not always evident. Similarly, various fluorescently labeled lipid analogs have been used to study membrane organization and function in vitro, although the biological activity of these probes in relation to their native counterparts often remains uncharacterized. This is particularly true for raft-preferring lipids ("raft lipids", e.g. sphingolipids and sterols), whose domain preference is a strict function of their molecular architecture, and is thus susceptible to disruption by fluorescence labeling. Here, we analyze the phase partitioning of a multitude of fluorescent raft lipid analogs in synthetic Giant Unilamellar Vesicles (GUVs) and cell-derived Giant Plasma Membrane Vesicles (GPMVs). We observe complex partitioning behavior dependent on label size, polarity, charge and position, lipid headgroup, and membrane composition. Several of the raft lipid analogs partitioned into the ordered phase in GPMVs, in contrast to fully synthetic GUVs, in which most raft lipid analogs mis-partitioned to the disordered phase. This behavior correlates with the greatly enhanced order difference between coexisting phases in the synthetic system. In addition, not only partitioning, but also ligand binding of the lipids is perturbed upon labeling: while cholera toxin B binds unlabeled GM1 in the Lo phase, it binds fluorescently labeled GM1 exclusively in the Ld phase. Fluorescence correlation spectroscopy (FCS) by stimulated emission depletion (STED) nanoscopy on intact cellular plasma membranes consistently reveals a constant level of confined diffusion for raft lipid analogs that vary greatly in their partitioning behavior, suggesting different physicochemical bases for these phenomena.  相似文献   

6.
The complex and dynamic architecture of biological membranes comprises of various heterogeneities, some of which may include lipid-based and/or protein-based microdomains called "rafts". Due to interactions among membrane components, several types of domains can form with different characteristics and mechanisms of formation. Model membranes, such as giant unilamellar vesicles (GUVs), provide a key system to study lipid-lipid and lipid-protein interactions, which are potentially relevant to raft formation, by (single-molecule) optical microscopy. Here, we review studies of combined confocal imaging and fluorescence correlation spectroscopy (FCS) on lipid dynamics and organization in domains assembled in GUVs, prepared from various lipid mixtures, which are relevant to the problem of raft formation. Finally, we summarize the results on lipid-protein interactions, which govern the targeting of several putative raft- and non-raft-associated membrane proteins to domain-exhibiting GUVs.  相似文献   

7.
The ternary lipid system palmitoylsphingomyelin (PSM)/palmitoyloleoylphosphatidylcholine (POPC)/cholesterol is a model for lipid rafts. Previously the phase diagram for that mixture was obtained, establishing the composition and boundaries for lipid rafts. In the present work, this system is further studied in order to characterize the size of the rafts. For this purpose, a time-resolved fluorescence resonance energy transfer (FRET) methodology, previously applied with success to a well-characterized phosphatidylcholine/cholesterol binary system, is used. It is concluded that: (1) the rafts on the low raft fraction of the raft region are small (below 20 nm), whereas on the other side the domains are larger; (2) on the large domain region, the domains reach larger sizes in the ternary system (> approximately 75-100 nm) than in binary systems phosphatidylcholine/cholesterol (between approximately 20 and approximately 75-100 nm); (3) the raft marker ganglioside G(M1) in small amounts (and excess cholera toxin subunit B) does not affect the general phase behaviour of the lipid system, but can increase the size of the rafts on the small to intermediate domain region. In summary, lipid-lipid interactions alone can originate lipid rafts on very different length scales. The conclusions presented here are consistent with the literature concerning both model systems and cell membrane studies.  相似文献   

8.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) is a prevalent phosphoinositide in cell membranes, with important functions in cell signaling and activation. A large fraction of PIP(2) associates with the detergent-resistant membrane "raft" fraction, but the functional significance of this association remains controversial. To measure the properties of raft and nonraft PIP(2) in cell signaling, we targeted the PIP(2)-specific phosphatase Inp54p to either the raft or nonraft membrane fraction using minimal membrane anchors. Interestingly, we observed that targeting Inp54p to the nonraft fraction resulted in an enrichment of raft-associated PIP(2) and striking changes in cell morphology, including a wortmannin-sensitive increase in cell filopodia and cell spreading. In contrast, raft-targeted Inp54p depleted the raft pool of PIP(2) and produced smooth T cells void of membrane ruffling and filopodia. Furthermore, raft-targeted Inp54p inhibited capping in T cells stimulated by cross-linking the T cell receptor, but without affecting the T cell receptor-dependent Ca(2+) flux. Altogether, these results provide evidence of compartmentalization of PIP(2)-dependent signaling in cell membranes such as predicted by the membrane raft model.  相似文献   

9.
Lateral assemblies of glycolipids and cholesterol, “rafts,” have been implicated to play a role in cellular processes like membrane sorting, signal transduction, and cell adhesion. We studied the structure of raft domains in the plasma membrane of non-polarized cells. Overexpressed plasma membrane markers were evenly distributed in the plasma membrane. We compared the patching behavior of pairs of raft markers (defined by insolubility in Triton X-100) with pairs of raft/non-raft markers. For this purpose we cross-linked glycosyl-phosphatidylinositol (GPI)-anchored proteins placental alkaline phosphatase (PLAP), Thy-1, influenza virus hemagglutinin (HA), and the raft lipid ganglioside GM1 using antibodies and/or cholera toxin. The patches of these raft markers overlapped extensively in BHK cells as well as in Jurkat T–lymphoma cells. Importantly, patches of GPI-anchored PLAP accumulated src-like protein tyrosine kinase fyn, which is thought to be anchored in the cytoplasmic leaflet of raft domains. In contrast patched raft components and patches of transferrin receptor as a non-raft marker were sharply separated. Taken together, our data strongly suggest that coalescence of cross-linked raft elements is mediated by their common lipid environments, whereas separation of raft and non-raft patches is caused by the immiscibility of different lipid phases. This view is supported by the finding that cholesterol depletion abrogated segregation. Our results are consistent with the view that raft domains in the plasma membrane of non-polarized cells are normally small and highly dispersed but that raft size can be modulated by oligomerization of raft components.  相似文献   

10.
The small intestinal brush border is composed of lipid raft microdomains, but little is known about their role in the mechanism whereby cholera toxin gains entry into the enterocyte. The present work characterized the binding of cholera toxin B subunit (CTB) to the brush border and its internalization. CTB binding and endocytosis were performed in organ-cultured pig mucosal explants and studied by fluorescence microscopy, immunogold electron microscopy, and biochemical fractionation. By fluorescence microscopy CTB, bound to the microvillar membrane at 4 degrees C, was rapidly internalized after the temperature was raised to 37 degrees C. By immunogold electron microscopy CTB was seen within 5 min at 37 degrees C to induce the formation of numerous clathrin-coated pits and vesicles between adjacent microvilli and to appear in an endosomal subapical compartment. A marked shortening of the microvilli accompanied the toxin internalization whereas no formation of caveolae was observed. CTB was strongly associated with the buoyant, detergent-insoluble fraction of microvillar membranes. Neither CTB's raft association nor uptake via clathrin-coated pits was affected by methyl-beta-cyclodextrin, indicating that membrane cholesterol is not required for toxin binding and entry. The ganglioside GM(1) is known as the receptor for CTB, but surprisingly the toxin also bound to sucrase-isomaltase and coclustered with this glycosidase in apical membrane pits. CTB binds to lipid rafts of the brush border and is internalized by a cholesterol-independent but clathrin-dependent endocytosis. In addition to GM(1), sucrase-isomaltase may act as a receptor for CTB.  相似文献   

11.
Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/cholesterol. For a certain range of cholesterol concentration, formation of domains with raft-like properties was observed. Strikingly, the lipophilic probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-C18) was excluded from sphingomyelin-enriched regions, where the raft marker ganglioside GM1 was localized. Cholesterol was shown to promote lipid segregation in dioleoyl-phosphatidylcholine-enriched, liquid-disordered, and sphingomyelin-enriched, liquid-ordered phases. Most importantly, the lipid mobility in sphingomyelin-enriched regions significantly increased by increasing the cholesterol concentration. These results pinpoint the key role, played by cholesterol in tuning lipid dynamics in membranes. At cholesterol concentrations >50 mol%, domains vanished and the lipid diffusion slowed down upon further addition of cholesterol. By taking the molecular diffusion coefficients as a fingerprint of membrane phase compositions, FCS is proven to evaluate domain lipid compositions. Moreover, FCS data from ternary and binary mixtures have been used to build a ternary phase diagram, which shows areas of phase coexistence, transition points, and, importantly, how lipid dynamics varies between and within phase regions.  相似文献   

12.
The alpha(1a)-adrenergic receptor (alpha(1a)AR) occupies intracellular and plasma membranes in both native and heterologous expression systems. Based on multiple independent lines of evidence, we demonstrate the alpha(1a)AR at the cell surface occupies membrane rafts but exits from rafts following stimulation. In non-detergent raft preparations, basal alpha(1a)AR is present in low density membrane rafts and colocalizes with its G protein effectors on density gradients. Raft disruption by cholesterol depletion with methyl-beta-cyclodextrin eliminates these light rafts. To confirm the presence of the alpha(1a)AR in plasma membrane rafts, fluorescence resonance energy transfer measurements were used to demonstrate colocalization of surface receptor and the raft marker, cholera toxin B. This colocalization was largely lost following alpha(1a)AR stimulation with phenylephrine. Similarly, receptor stimulation causes exit of the alpha(1a)AR from light rafts within 3-10 min in contrast to the G proteins, which largely remain in light rafts. Importantly, this delayed exit of the alpha(1a)AR suggests acute receptor signaling and desensitization occur entirely within rafts. Interestingly, both confocal analysis and measurement of surface alpha(1a)AR levels indicate modest receptor internalization during the 10 min following stimulation, suggesting most of the receptor has entered non-raft plasma membrane. Nevertheless, activation does increase the rate of receptor internalization as does disruption of rafts with methyl-beta-cyclodextrin, suggesting raft exit enables internalization. Confocal analysis of surface-labeled hemagglutinin-alpha(1a)AR reveals that basal and stimulated receptor occupies clathrin pits in fixed cells consistent with previous indirect evidence. The evidence presented here strongly suggests the alpha(1a)AR is a lipid raft protein under basal conditions and implies agonist-mediated signaling occurs from rafts.  相似文献   

13.
GUVs have been widely used for studies on lipid mobility, membrane dynamics and lipid domain (raft) formation, using single molecule techniques like fluorescence correlation spectroscopy. Reports on membrane protein dynamics in these types of model membranes are by far less advanced due to the difficulty of incorporating proteins into GUVs in a functional state. We have used sucrose to prevent four distinct membrane protein(s) (complexes) from inactivating during the dehydration step of the GUV-formation process. The amount of sucrose was optimized such that the proteins retained 100% biological activity, and many proteo-GUVs were obtained. Although GUVs could be formed by hydration of lipid mixtures composed of neutral and anionic lipids, an alternate current electric field was required for GUV formation from neutral lipids. Distribution, lateral mobility, and function of an ATP-binding cassette transport system, an ion-linked transporter, and a mechanosensitive channel in GUVs were determined by confocal imaging, fluorescence correlation spectroscopy, patch-clamp measurements, and biochemical techniques. In addition, we show that sucrose slows down the lateral mobility of fluorescent lipid analogs, possibly due to hydrogen-bonding with the lipid headgroups, leading to larger complexes with reduced mobility.  相似文献   

14.
Many lines of evidence show that membranes contain microdomains, "lipid rafts", that are different from the rest of the membrane in specific lipid and protein composition. In several biological systems, they were shown to be necessary for trafficking and signal transduction. Here, we investigate if lipid rafts have a role in the regulation of the G protein-mediated pathway underlying vertebrate phototransduction. Photoreceptor membranes contain detergent-resistant membrane (DRM) rafts. Rhodopsin and cGMP phosphodiesterase are found in raft and nonraft portions of the membrane; guanylate cyclase is found exclusively in the raft. Distribution of these proteins does not change in the light or dark. In contrast, the G protein transducin, the RGS9-1-Gbeta5L complex, and the p44 isoform of arrestin undergo dramatic translocation to the raft upon illumination. Phosphorylation of RGS9-1 occurs exclusively in the raft. GTPgammaS or pertussis toxin prevent the light-mediated translocation of transducin and RGS9-1, whereas AlF(minus sign)(4) causes both proteins to move to the raft in the dark. This shows that the Galphat-RGS9-1-Gbeta5L complex has the highest affinity to rafts in the transition state of the GTPase. GTPgammaS binds to transducin at a significantly slower rate in the raft, indicating that this translocation results in a reduced rhodopsin-transducin coupling. Thus, an external signal can rearrange components of a G protein pathway in specific domains of the cell membrane, changing its signaling properties. These findings could reveal a novel mechanism utilized by the cells for regulation of G protein-mediated signal transduction.  相似文献   

15.
To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipid rafts and lipid raft function. To test this idea, we examined whether CT action in human intestinal T84 cells depends on membrane cholesterol. Chelation of cholesterol with 2-hydroxypropyl beta-cyclodextrin or methyl beta-cyclodextrin reversibly inhibited CT-induced chloride secretion and prolonged the time required for CT to enter the cell and induce toxicity. These effects were specific to CT, as identical conditions did not alter the potency or toxicity of anthrax edema toxin that enters the cell by another mechanism. We found that endocytosis and trafficking of CT into the Golgi apparatus depended on membrane cholesterol. Cholesterol depletion also changed the density and specific protein content of CT-associated lipid raft fractions but did not entirely displace the CT-G(M1) complex from these lipid raft microdomains. Taken together these data imply that cholesterol may function to couple the CT-G(M1) complex with raft domains and with other membrane components of the lipid raft required for CT entry into the cell.  相似文献   

16.
We report on the characteristics of raft domains in the apical membrane from human placental syncytiotrophoblast (hSTB), an epithelium responsible for maternal-fetal exchange. Previously, we described two isolated fractions of the hSTB apical membrane: a classical microvillous membrane (MVM) and a light microvillous membrane (LMVM). Detergent-resistant microdomains (DRMs) from MVM and LMVM were prepared with Triton X-100 followed by flotation in a sucrose gradient and tested by Western and dot blot with raft markers (placental alkaline phosphatase, lipid ganglioside, annexin 2) and transferrin receptor as a nonraft marker. DRMs from both fractions showed a consistent peak for these markers, except that the DRMs from MVM had no annexin 2 mark. Cholesterol depletion modified the segregation in both groups of DRMs. Our results show two distinguishable lipid raft subsets from MVM and LMVM. Additionally, we found significant differences between MVM and LMVM in cholesterol content and in expression of cytoskeletal proteins. MVM is enriched in ezrin and beta-actin; in contrast, cholesterol and cytokeratin-7 are more abundant in LMVM. These differences may explain the distinct properties of the lipid raft subtypes.  相似文献   

17.
In recent years, the implication of sphingomyelin in lipid raft formation has intensified the long sustained interest in this membrane lipid. Accumulating evidences show that cholesterol preferentially interacts with sphingomyelin, conferring specific physicochemical properties to the bilayer membrane. The molecular packing created by cholesterol and sphingomyelin, which presumably is one of the driving forces for lipid raft formation, is known in general to differ from that of cholesterol and phosphatidylcholine membranes. However, in many studies, saturated phosphatidylcholines are still considered as a model for sphingolipids. Here, we investigate the effect of cholesterol on mixtures of dioleoyl-phosphatidylcholine (DOPC) and dipalmitoyl-phosphatidylcholine (DPPC) or distearoyl-phosphatidylcholine (DSPC) and compare it to that on mixtures of DOPC and sphingomyelin analyzed in previous studies. Giant unilamellar vesicles prepared from ternary mixtures of various lipid compositions were imaged by confocal fluorescence microscopy and, within a certain range of sterol content, domain formation was observed. The assignment of distinct lipid phases and the molecular mobility in the membrane bilayer was investigated by fluorescence correlation spectroscopy. Cholesterol was shown to affect lipid dynamics in a similar way for DPPC and DSPC when the two phospholipids were combined with cholesterol in binary mixtures. However, the corresponding ternary mixtures exhibited different spatial lipid organization and dynamics. Finally, evidences of a weaker interaction of cholesterol with saturated phosphatidylcholines than with sphingomyelin (with matched chain length) are discussed.  相似文献   

18.
Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics during the attack of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina, by combining time lapse three-dimensional live cell imaging, fluorescence recovery after photobleaching, FRET, and fluorescence cross-correlation spectroscopy. Our results show that membrane binding by equinatoxin II is accompanied by extensive plasma membrane reorganization into microscopic domains that resemble coalesced lipid rafts. Pore formation by the toxin induces Ca(2+) entry into the cytosol, which is accompanied by hydrolysis of phosphatidylinositol 4,5-bisphosphate, plasma membrane blebbing, actin cytoskeleton reorganization, and inhibition of endocytosis. We propose that plasma membrane reorganization into stabilized raft domains is part of the killing strategy of equinatoxin II.  相似文献   

19.
Although different detergents can give rise to detergent-resistant membranes of different composition, it is unclear whether this represents domain heterogeneity in the original membrane. We compared the mechanism of action of five detergents on supported lipid bilayers composed of equimolar sphingomyelin, cholesterol, and dioleoylphosphatidylcholine imaged by atomic force microscopy, and on raft and nonraft marker proteins in live cells imaged by confocal microscopy. There was a marked correlation between the detergent solubilization of the cell membrane and that of the supported lipid bilayers. In both systems Triton X-100 and CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) distinguished between the nonraft liquid-disordered (ld) and raft liquid ordered (lo) lipid phases by selectively solubilizing the ld phase. A higher concentration of Lubrol was required, and not all the ld phase was solubilized. The solubilization by Brij 96 occurred by a two-stage mechanism that initially resulted in the solubilization of some ld phase and then progressed to the solubilization of both ld and lo phases simultaneously. Octyl glucoside simultaneously solubilized both lo and ld phases. These data show that the mechanism of membrane solubilization is unique to an individual detergent. Our observations have significant implications for using different detergents to isolate membrane rafts from biological systems.  相似文献   

20.
Molecular partitioning during host cell penetration by Toxoplasma gondii   总被引:1,自引:1,他引:0  
During invasion by Toxoplasma gondii, host cell transmembrane proteins are excluded from the forming parasitophorous vacuole membrane (PVM) by the tight apposition of host and parasite cellular membranes. Previous studies suggested that the basis for the selective partitioning of membrane constituents may be a preference for membrane microdomains, and this hypothesis was herein tested. The partitioning of a diverse group of molecular reporters for raft and nonraft membrane subdomains was monitored during parasite invasion by time-lapse video or confocal microscopy. Unexpectedly, both raft and nonraft lipid probes, as well as both raft and nonraft cytosolic leaflet proteins, flowed unhindered past the host-parasite junction into the PVM. Moreover, neither a raft-associated type 1 transmembrane protein nor its raft-dissociated counterpart accessed the PVM, while a multispanning membrane raft protein readily did so. Considered together with previous data, these studies demonstrate that selective partitioning at the host-parasite interface is a highly complex process, in which raft association favors, but is neither necessary nor sufficient for, inclusion into the T. gondii PVM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号