首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Martin G  Lenormand T 《Genetics》2008,179(2):907-916
The distribution of the selection coefficients of beneficial mutations is pivotal to the study of the adaptive process, both at the organismal level (theories of adaptation) and at the gene level (molecular evolution). A now famous result of extreme value theory states that this distribution is an exponential, at least when considering a well-adapted wild type. However, this prediction could be inaccurate under selection for an optimum (because fitness effect distributions have a finite right tail in this case). In this article, we derive the distribution of beneficial mutation effects under a general model of stabilizing selection, with arbitrary selective and mutational covariance between a finite set of traits. We assume a well-adapted wild type, thus taking advantage of the robustness of tail behaviors, as in extreme value theory. We show that, under these general conditions, both beneficial mutation effects and fixed effects (mutations escaping drift loss) are beta distributed. In both cases, the parameters have explicit biological meaning and are empirically measurable; their variation through time can also be predicted. We retrieve the classic exponential distribution as a subcase of the beta when there are a moderate to large number of weakly correlated traits under selection. In this case too, we provide an explicit biological interpretation of the parameters of the distribution. We show by simulations that these conclusions are fairly robust to a lower adaptation of the wild type and discuss the relevance of our findings in the context of adaptation theories and experimental evolution.  相似文献   

3.
Adaptation is conventionally regarded as occurring at the level of the individual organism. In contrast, the theory of the selfish gene proposes that it is more correct to view adaptation as occurring at the level of the gene. This view has received much popular attention, yet has enjoyed only limited uptake in the primary research literature. Indeed, the idea of ascribing goals and strategies to genes has been highly controversial. Here, we develop a formal theory of the selfish gene, using optimization theory to capture the analogy of 'gene as fitness-maximizing agent' in mathematical terms. We provide formal justification for this view of adaptation by deriving mathematical correspondences that translate the optimization formalism into dynamical population genetics. We show that in the context of social interactions between genes, it is the gene's inclusive fitness that provides the appropriate maximand. Hence, genic selection can drive the evolution of altruistic genes. Finally, we use the formalism to assess the various criticisms that have been levelled at the theory of the selfish gene, dispelling some and strengthening others.  相似文献   

4.
Wood TE  Burke JM  Rieseberg LH 《Genetica》2005,123(1-2):157-170
Until recently, parallel genotypic adaptation was considered unlikely because phenotypic differences were thought to be controlled by many genes. There is increasing evidence, however, that phenotypic variation sometimes has a simple genetic basis and that parallel adaptation at the genotypic level may be more frequent than previously believed. Here, we review evidence for parallel genotypic adaptation derived from a survey of the experimental evolution, phylogenetic, and quantitative genetic literature. The most convincing evidence of parallel genotypic adaptation comes from artificial selection experiments involving microbial populations. In some experiments, up to half of the nucleotide substitutions found in independent lineages under uniform selection are the same. Phylogenetic studies provide a means for studying parallel genotypic adaptation in non-experimental systems, but conclusive evidence may be difficult to obtain because homoplasy can arise for other reasons. Nonetheless, phylogenetic approaches have provided evidence of parallel genotypic adaptation across all taxonomic levels, not just microbes. Quantitative genetic approaches also suggest parallel genotypic evolution across both closely and distantly related taxa, but it is important to note that this approach cannot distinguish between parallel changes at homologous loci versus convergent changes at closely linked non-homologous loci. The finding that parallel genotypic adaptation appears to be frequent and occurs at all taxonomic levels has important implications for phylogenetic and evolutionary studies. With respect to phylogenetic analyses, parallel genotypic changes, if common, may result in faulty estimates of phylogenetic relationships. From an evolutionary perspective, the occurrence of parallel genotypic adaptation provides increasing support for determinism in evolution and may provide a partial explanation for how species with low levels of gene flow are held together.  相似文献   

5.
Genomic and genetic methods allow investigation of how frequently the same genes are used by different populations during adaptive evolution, yielding insights into the predictability of evolution at the genetic level. We estimated the probability of gene reuse in parallel and convergent phenotypic evolution in nature using data from published studies. The estimates are surprisingly high, with mean probabilities of 0.32 for genetic mapping studies and 0.55 for candidate gene studies. The probability declines with increasing age of the common ancestor of compared taxa, from about 0.8 for young nodes to 0.1–0.4 for the oldest nodes in our study. Probability of gene reuse is higher when populations begin from the same ancestor (genetic parallelism) than when they begin from divergent ancestors (genetic convergence). Our estimates are broadly consistent with genomic estimates of gene reuse during repeated adaptation to similar environments, but most genomic studies lack data on phenotypic traits affected. Frequent reuse of the same genes during repeated phenotypic evolution suggests that strong biases and constraints affect adaptive evolution, resulting in changes at a relatively small subset of available genes. Declines in the probability of gene reuse with increasing age suggest that these biases diverge with time.  相似文献   

6.
The codon usage of the Angiosperm psbA gene is atypical for flowering plant chloroplast genes but similar to the codon usage observed in highly expressed plastid genes from some other Plantae, particularly Chlorobionta, lineages. The pattern of codon bias in these genes is suggestive of selection for a set of translationally optimal codons but the degree of bias towards these optimal codons is much weaker in the flowering plant psbA gene than in high expression plastid genes from lineages such as certain green algal groups. Two scenarios have been proposed to explain these observations. One is that the flowering plant psbA gene is currently under weak selective constraints for translation efficiency, the other is that there are no current selective constraints and we are observing the remnants of an ancestral codon adaptation that is decaying under mutational pressure. We test these two models using simulations studies that incorporate the context-dependent mutational properties of plant chloroplast DNA. We first reconstruct ancestral sequences and then simulate their evolution in the absence of selection on codon usage by using mutation dynamics estimated from intergenic regions. The results show that psbA has a significantly higher level of codon adaptation than expected while other chloroplast genes are within the range predicted by the simulations. These results suggest that there have been selective constraints on the codon usage of the flowering plant psbA gene during Angiosperm evolution.  相似文献   

7.
Photoreceptors are critical molecules that function at the interface between organism and environment. Plants use specific light signals to determine their place in time and space, allowing them to synchronize their growth, metabolism, and development to the environments in which they occur. Thus, innovation in light sensing mechanisms is expected to coincide with adaptation and diversification. Three studies involving the well-characterized phytochrome photoreceptor system in plants indicate that much work is yet needed to test this expectation. In early diverging flowering plants, episodic positive selection influenced the evolution of phytochrome A, but little of the functional data needed to link molecular adaptation with a change in gene function are available. In the model plant Arabidopsis thaliana, known functional differences between a recently duplicated gene pair remain difficult to characterize at the sequence level. In parasitic plants, patterns of development that in autotrophs are under the control of light signals are highly modified, suggesting that phytochromes and other photoreceptors function differently in nonphotosynthetic plants. Analyses of phytochrome A coding sequences indicate that they are evolving under relaxed constraints in nonphotosynthetic Orobanchaceae, consistent with the expectation of functional change. Further work is needed to determine which of the processes mediated by phyA may have been altered, a line of investigation that may improve our understanding of divergence points in downstream signaling pathways.  相似文献   

8.
9.
Darwinian evolution in the light of genomics   总被引:1,自引:0,他引:1       下载免费PDF全文
Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future.  相似文献   

10.
The evolution of assortative mating is a key component of the process of speciation with gene flow. Several recent theoretical studies have pointed out, however, that sexual selection which can result from assortative mating may cause it to plateau at an intermediate level; this is primarily owing to search costs of individuals with extreme phenotypes and to assortative preferences developed by individuals with intermediate phenotypes. I explore the limitations of assortative mating further by analysing a simple model in which these factors have been removed. Specifically, I use a haploid two-population model to ask whether the existence of assortative mating is sufficient to drive the further evolution of assortative mating. I find that a weakening in the effective strength of sexual selection with strong assortment leads to the existence of both a peak level of trait differentiation and the evolution of an intermediate level of assortative mating that will cause that peak. This result is robust to the inclusion of local adaptation and different genetic architecture of the trait. The results imply the existence of fundamental limits to the evolution of assortment via sexual selection in this situation, with which other factors, such as search costs, may interact.  相似文献   

11.
Insecticide resistance genes have developed in a wide variety of insects in response to heavy chemical application. Few of these examples of adaptation in response to rapid environmental change have been studied both at the population level and at the gene level. One of these is the evolution of the overproduced esterases that are involved in resistance to organophosphate insecticides in the mosquito Culex pipiens. At the gene level, two genetic mechanisms are involved in esterase overproduction, namely gene amplification and gene regulation. At the population level, the co-occurrence of the same amplified allele in distinct geographic areas is best explained by the importance of passive transportation at the worldwide scale. The long-term monitoring of a population of mosquitoes in southern France has enabled a detailed study to be made of the evolution of resistance genes on a local scale, and has shown that a resistance gene with a lower cost has replaced a former resistance allele with a higher cost.  相似文献   

12.
Theoretical studies of adaptation have exploded over the past decade. This work has been inspired by recent, surprising findings in the experimental study of adaptation. For example, morphological evolution sometimes involves a modest number of genetic changes, with some individual changes having a large effect on the phenotype or fitness. Here I survey the history of adaptation theory, focusing on the rise and fall of various views over the past century and the reasons for the slow development of a mature theory of adaptation. I also discuss the challenges that face contemporary theories of adaptation.  相似文献   

13.
There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.  相似文献   

14.
15.
Bull JJ  Molineux IJ 《Heredity》2008,100(5):453-463
A wealth of molecular biology has been exploited in designing and interpreting experimental evolution studies with bacteriophage T7. The modest size of its genome (40 kb dsDNA) and the ease of making genetic constructs, combined with the many genetic resources for its host (Escherichia coli), have enabled comprehensive and detailed studies of experimental adaptations. In several studies, the genome was specifically altered (gene knockouts, gene replacements, reordering of genetic elements) such that a priori knowledge of genetics and biochemistry of the phage could be used to predict the pathways of compensatory evolution when the modified phage is adapted to recover fitness. In other work, the phage has been adapted to specific environmental conditions chosen to select phenotypic outcomes with a quantitative basis, and the molecular bases of that evolution have been explored. Predicting the outcomes of these adaptations has been challenging. In hindsight, one-third to one-half of the compensatory nucleotide changes observed during the adaptation can be rationalized based on T7 biology. This rationalization usually only applies at the genetic level-a gene product may be known to be involved in the affected pathway, but it usually remains unknown how the observed change affects activity. The progress is encouraging, but the prediction of experimental evolution pathways remains far from complete, and is still sometimes confounded by observation when an adaptation yields a completely unexpected outcome.  相似文献   

16.
What is the nature of the genetic changes underlying phenotypic evolution? We have catalogued 1008 alleles described in the literature that cause phenotypic differences among animals, plants, and yeasts. Surprisingly, evolution of similar traits in distinct lineages often involves mutations in the same gene (“gene reuse”). This compilation yields three important qualitative implications about repeated evolution. First, the apparent evolution of similar traits by gene reuse can be traced back to two alternatives, either several independent causative mutations or a single original mutational event followed by sorting processes. Second, hotspots of evolution—defined as the repeated occurrence of de novo mutations at orthologous loci and causing similar phenotypic variation—are omnipresent in the literature with more than 100 examples covering various levels of analysis, including numerous gain‐of‐function events. Finally, several alleles of large effect have been shown to result from the aggregation of multiple small‐effect mutations at the same hotspot locus, thus reconciling micromutationist theories of adaptation with the empirical observation of large‐effect variants. Although data heterogeneity and experimental biases prevented us from extracting quantitative trends, our synthesis highlights the existence of genetic paths of least resistance leading to viable evolutionary change.  相似文献   

17.
The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.  相似文献   

18.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

19.
Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude.  相似文献   

20.
A central goal of evolutionary genetics is to trace the causal pathway between mutations at particular genes and adaptation at the phenotypic level. The proximate objective is to identify adaptations through the analysis of molecular sequence data from specific candidate genes or their regulatory elements. In this paper, we consider the molecular evolution of floral color in the morning glory genus (Ipomoea) as a model for relating molecular and phenotypic evolution. To begin, flower color variation usually conforms to simple Mendelian transmission, thus facilitating genetic and molecular analyses. Population genetic studies of flower color polymorphisms in the common morning glory (Ipomoea purpurea) have shown that some morphs are subject to complex patterns of selection. Striking differences in floral color and morphology are also associated with speciation in the genus Ipomoea. The molecular bases for these adaptive shifts can be dissected because the biosynthetic pathways that determine floral pigmentation are well understood and many of the genes of flavonoid biosynthesis have been isolated and extensively studied. We present a comparative analysis of the level of gene expression in Ipomoea for several key genes in flavonoid biosynthesis. Specifically we ask: how frequently are adaptive shifts in flower color phenotypes associated with changes in regulation of gene expression versus mutations in structural genes? The results of this study show that most species differences in this crucial phenotype are associated with changes in the regulation of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号