首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Manganese (Mn) is an essential element for biological systems, nevertheless occupational exposure to high levels of Mn can lead to neurodegenerative disorders, characterized by serious oxidative and neurotoxic effects with similarities to Parkinson’s disease. The aim of this study was to investigate the potential effects of silymarin (SIL), an antioxidant flavonoid, against manganese chloride induced neurotoxicity both in vivo (cerebral cortex of rats) and in vitro (Neuro2a cells). Twenty-eight male Wistar rats were randomly divided into four groups: the first group (C) received vehicle solution (i.p.) served as controls. The second group (Mn) received orally manganese chloride (20 mg/ml). The third group (Mn + SIL) received both Mn and SIL. The fourth group (SIL) received only SIL (100 mg/kg/day, i.p.). Animals exposed to Manganese chloride showed a significant increase in TBARS, NO, AOPP and PCO levels in cerebral cortex. These changes were accompanied by a decrease of enzymatic (SOD, CAT, GPx) and non-enzymatic (GSH, NpSH, Vit C) antioxidants. Co-administration of silymarin to Mn-treated rats significantly improved antioxidant enzyme activities and attenuated oxidative damages observed in brain tissue. The potential effect of SIL to prevent Mn induced neurotoxicity was also reflected by the microscopic study, indicative of its neuroprotective effects. We concluded that silymarin possesses neuroprotective potential, thus validating its use in alleviating manganese-induced neurodegenerative effects.  相似文献   

2.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

3.
The present study is aimed to evaluate the putative neuroprotective effect of quercetin on PCB induced impairment of dopaminergic receptor mRNA expression in cerebral cortex of adult male Wistar rats. Group I (control) received only vehicle (corn oil; 0.1 ml/kg bwt) intraperitoneally (i.p); Group II Aroclor 1254 at a dose of 2 mg/kg bwt/day (i.p); Group III (Aroclor 1254—exposed (i.p), quercetin treated gavage (50 mg/kg bwt/day); Group IV received quercetin alone (gavage). 24 h after the 30th day treatment rats were euthanized. From each rat cerebral cortex tissues was collected and analyzed for mean activities of creatine kinase, acetylcholine esterase, Na+/K+, Ca2+ and Mg2+ATPases, Hydrogen peroxide generation, protein carbonyl content and lipid peroxidation levels. The fates of the mRNA expression of dopaminergic receptors, Cacna1d on all the groups were studied by RT–PCR. Results evidenced that significant reduction of neurodegeneration in PCBs exposed rats treated with quercetin was ascertained suggesting, quercetin treatment precludes against PCB induced oxidative stress and protects dopaminergic receptor dysfunction in rat cerebral cortex.  相似文献   

4.
The current study investigated the neuroprotective activity of idebenone against pilocarpine-induced seizures and hippocampal injury in rats. Idebenone is a ubiquinone analog with antioxidant, and ATP replenishment effects. It is well tolerated and has low toxicity. Previous studies reported the protective effects of idebenone against neurodegenerative diseases such as Friedreich’s ataxia and Alzheimer’s disease. So far, the efficacy of idebenone in experimental models of seizures has not been tested. To achieve this aim, rats were randomly distributed into six groups. Two groups were treated with either normal saline (0.9 %, i.p., control group) or idebenone (200 mg/kg, i.p., Ideb200 group) for three successive days. Rats of the other four groups (P400, Ideb50 + P400, Ideb100 + P400, and Ideb200 + P400) received either saline or idebenone (50, 100, 200 mg/kg, i.p.) for 3 days, respectively followed by a single dose of pilocarpine (400 mg/kg, i.p.). All rats were observed for 6 h post pilocarpine injection. Latency to the first seizure, and percentages of seizures and survival were recorded. Surviving animals were sacrificed, and the hippocampal tissues were separated and used for the measurement of lipid peroxides, total nitrate/nitrite, glutathione and DNA fragmentation levels, in addition to catalase and Na+, K+-ATPase activities. Results revealed that in a dose-dependent manner, idebenone (100, 200 mg/kg) prolonged the latency to the first seizure, elevated the percentage of survival and diminished the percentage of pilocapine-induced seizures in rats. Significant increases in lipid peroxides, total nitrate/nitrite, DNA fragmentation levels and catalase activity, in addition to a significant reduction in glutathione level and Na+, K+-ATPase activity were observed in pilocarpine group. Pre-administration of idebenone (100, 200 mg/kg, i.p.) to pilocarpine-treated rats, significantly reduced lipid peroxides, total nitrate/nitrite, DNA fragmentation levels, and normalized catalase activity. Moreover, idebenone prevented pilocarpine-induced detrimental effects on brain hippocampal glutathione level, and Na+, K+-ATPase enzyme activity in rats. Data obtained from the current investigation emphasized the critical role of oxidative stress in induction of seizures by pilocarpine and elucidated the prominent neuroprotective and antioxidant activities of idebenone in this model.  相似文献   

5.
It is well known that the levels of adenosine in the brain increase dramatically during cerebral hypoxic-ischemic (HI) insults. Its levels are tightly regulated by physiological and pathophysiological changes that occur during the injury acute phase. The aim of the present study was to examine the effects of the neonatal HI event on cytosolic and ecto-enzymes of purinergic system––NTPDase, 5′-nucleotidase (5′-NT) and adenosine deaminase (ADA)––in cerebral cortex of rats immediately post insult. Furthermore, the Na+/K+-ATPase activity, adenosine kinase (ADK) expression and thiobarbituric acid reactive species (TBARS) levels were assessed. Immediately after the HI event the cytosolic NTPDase and 5′-NT activities were increased in the cerebral cortex. In synaptosomes there was an increase in the ecto-ADA activity while the Na+/K+ ATPase activity presented a decrease. The difference between ATP, ADP, AMP and adenosine degradation in synaptosomal and cytosolic fractions could indicate that NTPDase, 5′-NT and ADA were differently affected after insult. Interestingly, no alterations in the ADK expression were observed. Furthermore, the Na+/K+-ATPase activity was correlated negatively with the cytosolic NTPDase activity and TBARS content. The increased hydrolysis of nucleotides ATP, ADP and AMP in the cytosol could contribute to increased adenosine levels, which could be related to a possible innate neuroprotective mechanism aiming at potentiating the ambient levels of adenosine. Together, these results may help the understanding of the mechanism by which adenosine is produced following neonatal HI injury, therefore highlighting putative therapeutical targets to minimize ischemic injury and enhance recovery.  相似文献   

6.
Manganese (Mn) is a potent neurotoxin involved in the initiation and progression of various cognitive disorders. Oxidative stress is reported as one of accepted mechanisms of Mn toxicity. The present study was designed to explore the effects of silymarin, a natural antioxidant, in attenuating the toxicity induced by Mn in rat cerebellum. In this investigation, rats were treated orally with MnCl2 (20 mg/ml) for 30 days, subsets of these animals were treated intraperitoneally daily with silymarin (100 mg/kg) along with respective controls. Mn exposure caused a marked oxidative stress in cerebellum as indicated by a significant decrease in the activities of enzymatic antioxidants like superoxide dismutase, catalase and glutathione peroxidase and in the levels of non-enzymatic antioxidants like reduced glutathione (GSH), total thiols and vitamin C. Conversely an increase was obtained in lipid and protein markers such as thiobarbituric reactive acid substances, lipid hydroperoxide and protein carbonyl products contents. A Significant increase in acetylcholinesterase and a decrease in Na+/K+-ATPase activities were also shown, with a substantial rise in the expression of acetylcholinesterase and inducible nitric oxide synthase (iNOS), and nitric oxide levels. The potential effect of SIL to prevent Mn induced neurotoxicity was also reflected by histopathological observations. Rats exposed to Mn showed a reduced number and morphological alterations of cerebellar Purkinje cells. These phenomenons were completely reversed by SIL co-treatment. We concluded that silymarin may protect against Mn-induced oxidative stress in cerebellum by inhibiting both lipid and protein oxidation and by activating acetylcholinesterase and inducible nitric oxide synthase (iNOS) gene expression.  相似文献   

7.
Uptake of [U-14C] glycine during the organophosphorus-ester-induced delayed neurotoxicity (OPIDN) development period was studied. Diisopropyl fluorophosphate (DFP), a delayed neurotoxic organophosphorus ester was administered to adult rats and hens. Results showed a decreased accumulation of glycine in hen cerebral cortex slices during the delayed neurotoxicity development period. An altered sensitivity toward transport inhibitors 2,4-dinitrophenol and ouabain was observed in DFP-treated hens. An altered neuronal membrane function during the OPIDN development period is reported in the present work. Brain Na+, K+-ATPase and Ca++-ATPase activities decreased during the neurotoxicity development period. The decrease in Ca++-ATPase activity persisted in hens until the complete development of neurotoxic symptoms. Decreased Ca++ pump activity is correlated with altered membrane function during OPIDN. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
There are many studies about iron-induced neuronal hyperactivity and oxidative stress. Some reports also showed that iron levels rise in the brain in some neurodegenerative diseases such as Parkinson’s (PD) and Alzheimer’s disease (AD). It has been suggested that excessive iron level increases oxidative stress and causes neuronal death. Tocopherols act as a free radical scavenger when phenoxylic head group encounters a free radical. We have aimed to identify the effect of α-tocopherol (Vitamin E) on iron-induced neurotoxicity. For this reason, rats were divided into three groups as control, iron, and iron + α-tocopherol groups. Iron chloride (200 mM in 2.5 μl volume) was injected into brain ventricle of iron and iron + α-tocopherol group rats. Same volume of saline (2.5 μl) was given to the rats belonging to control group. Rats of iron + α-tocopherol group received intraperitoneally (i.p.) α-tocopherol (100 mg/kg/day) for 10 days. After 10 days, rats were perfused intracardially under deep urethane anesthesia. Removed brains were processed using standard histological techniques. The numbers of neurons in hippocampus and substantia nigra of all rats were estimated by stereological techniques. Results of present study show that α-tocopherol decreased hippocampal and nigral neuron loss from 51.7 to 12.1% and 41.6 to 17.8%, respectively. Findings of the present study suggest that α-tocopherol may have neuroprotective effects against iron-induced hippocampal and nigral neurotoxicity and it may have a therapeutic significance for neurodegenerative diseases involved iron.  相似文献   

9.
Anthocyanins (ANT) are polyphenolic flavonoids with antioxidant and neuroprotective properties. This study evaluated the effect of ANT treatment on cognitive performance and neurochemical parameters in an experimental model of sporadic dementia of Alzheimer's type (SDAT). Adult male rats were divided into four groups: control (1 ml/kg saline, once daily, by gavage), ANT (200 mg/kg, once daily, by gavage), streptozotocin (STZ, 3 mg/kg) and STZ plus ANT. STZ was administered via bilateral intracerebroventricular (ICV) injection (5 μl). ANT were administered after ICV injection for 25 days. Cognitive deficits (short-term memory and spatial memory), oxidative stress parameters, and acetylcholinesterase (AChE) and Na+-K+-ATPase activity in the cerebral cortex and hippocampus were evaluated. ANT treatment protected against the worsening of memory in STZ-induced SDAT. STZ promoted an increase in AChE and Na+-K+-ATPase total and isoform activity in both structures; ANT restored this change. STZ administration induced an increase in lipid peroxidation and decrease in the level of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the cerebral cortex; ANT significantly attenuated these effects. In the hippocampus, an increase in reactive oxygen species (ROS), nitrite and lipid peroxidation levels, and SOD activity and a decrease in CAT and GPx activity were seen after STZ injection. ANT protected against the changes in ROS and antioxidant enzyme levels. In conclusion, the present study showed that treatment with ANT attenuated memory deficits, protected against oxidative damage in the brain, and restored AChE and ion pump activity in an STZ-induced SDAT in rats.  相似文献   

10.
Cadmium (Cd) induces neurotoxicity owing to its highly deleterious capacity to cross the blood brain barrier (BBB). Recent studies have provided insights on antioxidant properties of bioflavonoids which have emerged as potential therapeutic and nutraceutical agents. The aim of our study was to examine the hypothesis that hesperidin (HP) ameliorates oxidative stress and may have mitigatory effects in the extent of heavy metal-induced neurotoxicity. Cd (3 mg/kg body weight) was administered subcutaneously for 21 days while HP (40 mg/kg body weight) was administered orally once every day. The results of the current investigation demonstrate significant elevated levels of oxidative stress markers such as lipid peroxidation (LPO) and protein carbonyl (PC) along with significant depletion in the activity of non-enzymatic antioxidants like glutathione (GSH) and non-protein thiol (NP-SH) and enzymatic antioxidants in the Cd treated rats’ brain. Activity of neurotoxicity biomarkers such as acetylcholinesterase (AchE), monoamine oxidase (MAO) and total ATPase were also altered significantly and HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers while salvaging the antioxidant sentinels of cells to near normal levels thus exhibiting potent antioxidant and neuroprotective effects on the brain tissue against oxidative damage in Cd treated rodent model.  相似文献   

11.
The present study was carried out to investigate the protective effect of Physalis peruviana L. (family Solanaceae) against cadmium-induced neurotoxicity in rats. Adult male Wistar rats were randomly divided into four groups. Group 1 was used as control. Group 2 was intraperitoneally injected with 6.5 mg/kg bwt of cadmium chloride for 5 days. Group 3 was treated with 200 mg/kg bwt of methanolic extract of Physalis (MEPh). Group 4 was pretreated with MEPh 1 h before cadmium for 5 days. Cadmium treatment induced marked disturbances in neurochemical parameters as indicating by significant (p?p?p?p?p?2+, Cl?, DA, 5-HT, and serotonin metabolite, 5-HIAA. These data indicated that Physalis has a beneficial effect in ameliorating the cadmium-induced oxidative neurotoxicity in the brain of rats.  相似文献   

12.
Acrylamide (ACR) is a known industrial toxic chemical that produce neurotoxicity characterized by progressive neuronal degeneration. This study was designed to investigate the protective effect of fish oil on ACR-induced neuronal damage in Wistar rats. ACR enhances the production of reactive oxygen species and potentially affects brain. ACR administered rats showed increased levels of lipid peroxidative product, protein carbonyl content, hydroxyl radical and hydroperoxide which were significantly modulated by the supplementation of fish oil. The activities of enzymic antioxidants and levels of reduced glutathione were markedly lowered in ACR-induced rats; fish oil treatment augmented these antioxidant levels in cortex. Free radicals generated during ACR administration reduced the activities of membrane adenosine triphosphatases and acetylcholine esterase. Fish oil enhanced the activities of these enzymes near normal level. Histological observation represented the protective role of fish oil in ACR-induced neuronal damage. Fish oil reduced the ACR-induced apoptosis through the modulation in expressions of B-cell lymphoma 2 (Bcl2)-associated X protein and Bcl2-associated death promoter. Further, fish oil increases the expression of heat shock protein 27 (Hsp27) in ACR-induced rats. This study provides evidence for the neuroprotective effect of fish oil on ACR-induced neurotoxicity by reducing oxidative stress and apoptosis with modulation in the expression of Hsp27.  相似文献   

13.
Increased oxidative stress and energy metabolism deficit have been regarded as an important underlying cause for neuronal damage induced by cerebral ischemia/reperfusion (I/R) injury. In this study, we investigated the oxidative mechanisms underlying the neuroprotective effects of resveratrol, a potent polyphenol antioxidant found in grapes, on structural and biochemical abnormalities in rats subjected to global cerebral ischemia. Experimental model of transient global cerebral ischemia was induced in Wistar rats by the four vessel occlusion method for 10 min and followed by different periods of reperfusion. Nissl and fluoro jade C stained indicated extensive neuronal death at 7 days after I/R. These findings were preceded by a rapid increase in the generation of reactive oxygen species (ROS), nitric oxide (NO), lipid peroxidation, as well as by a decrease in Na+K+-ATPase activity and disrupted antioxidant defenses (enzymatic and non-enzymatic) in hippocampus and cortex. Administrating resveratrol 7 days prior to ischemia by intraperitoneal injections (30 mg/kg) significantly attenuated neuronal death in both studied structures, as well as decreased the generation of ROS, lipid peroxidation and NO content. Furthermore, resveratrol brought antioxidant and Na+K+-ATPase activity in cortex and hippocampus back to normal levels. These results support that resveratrol could be used as a preventive, or therapeutic, agent in global cerebral ischemia and suggest that scavenging of ROS contributes, at least in part, to resveratrol-induced neuroprotection.  相似文献   

14.
Alzheimer’s disease (AD) is a neurodegenerative disorder whose pathogenesis involves production and aggregation of amyloid-β peptide (Aβ). Aβ-induced toxicity is believed to involve alterations on as Na+,K+-ATPase and acetylcholinesterase (AChE) activities, prior to neuronal death. Drugs able to prevent or to reverse these biochemical changes promote neuroprotection. GM1 is a ganglioside proposed to have neuroprotective roles in AD models, through mechanisms not yet fully understood. Therefore, this study aimed to investigate the effect of Aβ1-42 infusion and GM1 treatment on recognition memory and on Na+,K+-ATPase and AChE activities, as well as, on antioxidant defense in the brain cortex and the hippocampus. For these purposes, Wistar rats received i.c.v. infusion of fibrilar Aβ1-42 (2 nmol) and/or GM1 (0.30 mg/kg). Behavioral and biochemical analyses were conducted 1 month after the infusion procedures. Our results showed that GM1 treatment prevented Aβ-induced cognitive deficit, corroborating its neuroprotective function. Aβ impaired Na+,K+-ATPase and increase AChE activities in hippocampus and cortex, respectively. GM1, in turn, has partially prevented Aβ-induced alteration on Na+,K+-ATPase, though with no impact on AChE activity. Aβ caused a decrease in antioxidant defense, specifically in hippocampus, an effect that was prevented by GM1 treatment. GM1, both in cortex and hippocampus, was able to increase antioxidant scavenge capacity. Our results suggest that Aβ-triggered cognitive deficit involves region-specific alterations on Na+,K+-ATPase and AChE activities, and that GM1 neuroprotection involves modulation of Na+,K+-ATPase, maybe by its antioxidant properties. Although extrapolation from animal findings is difficult, it is conceivable that GM1 could play an important role in AD treatment.  相似文献   

15.
In the present study, we investigated whether sepsis induced by cecal ligation and puncture (CLP) modifies Na+, K+-ATPase activity, mRNA expression, and cerebral edema in hippocampus and cerebral cortex of rats and if antioxidant (ATX) treatment prevented the alterations induced by sepsis. Rats were subjected to CLP and were divided into three groups: sham; CLP??rats were subjected to CLP without any further treatment; and ATX?CCLP plus administration of N-acetylcysteine plus deferoxamine. Several times (6, 12, and 24) after CLP or sham operation, the rats were killed and hippocampus and cerebral cortex were isolated. Na+, K+-ATPase activity was inhibited in the hippocampus 24?h after sepsis, and ATX treatment was not able to prevent this inhibition. The Na+, K+-ATPase activity also was inhibited in cerebral cortex 6, 12, and 24?h after sepsis. No differences on Na+, K+-ATPase catalytic subunit mRNA levels were found in the hippocampus and cerebral cortex after sepsis. ATX treatment prevents Na+, K+-ATPase inhibition only in the cerebral cortex. Na+, K+-ATPase inhibition was not associated to increase brain water content. In conclusion, the present study demonstrated that sepsis induced by CLP inhibits Na+, K+-ATPase activity in a mechanism dependent on oxidative stress, but this is not associated to increase brain water content.  相似文献   

16.
Sorrenti  V.  Giacomo  C. Di  Campisi  A.  Perez-Polo  J. R.  Vanella  A. 《Neurochemical research》1999,24(7):861-866
Nitric Oxide (NO) mediates a series of physiological processes including regulation of vascular tone, macrophage-mediated cytotoxicity, platelet aggregation, learning and long-term potentiation, neuronal transmission. Although NO mediates several physiological functions, overproduction of NO can be detrimental and play multiple roles in the pathophysiology of focal cerebral ischemia. In the present study NOS activities were evaluated in cerebellum and cerebral cortex of ischemic and post-ischemic reperfused rats using an experimental model of partial cerebral ischemia; moreover, the effects of L-NGNitroarginine (NA, nonselective NOS inhibitor) or 7-Nitroindazole (7-NI, selective neuronal NOS inhibitor) administration were assayed on percentage survival of ischemic rats. An increase of NOS activity in the cerebellum and in cerebral cortex of ischemic and post-ischemic reperfused rats was observed. NA administration failed to induce neuroprotective effects, by increasing percentage of mortality of treated ischemic rats with respect to control group. In contrast, the treatment with the selective neuronal NOS inhibitor, 7-NI, induced a significant neuroprotective effect.  相似文献   

17.
Diabetes is associated with long‐term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)‐induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na+K+‐adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ‐ALA‐D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ‐induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3, control/Metf + VD3, diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3. Thirty days after treatment, animals were submitted to contextual fear‐conditioning and open‐field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ‐ALA‐D and Na+K+‐ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na+K+‐ATPase was reverted when compared with non‐treated rats, but the increase in δ‐ALA‐D activity was not. VD3 prevented diabetes‐induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na+K+‐ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
As a highly toxic environmental pollutant, methylmercury (MeHg) can cause neurotoxicity in animals and humans. Considering the antioxidant property of grape seed proanthocyanidin extracts (GSPE), this study was aimed to evaluate the effect of GSPE on MeHg-induced neurotoxicity in rats. Rats were exposed to MeHg by intraperitoneal injection (4, 12 μmol/kg, respectively) and GSPE was administered by gavage (250 mg/kg) 2 h later. After a 4-week treatment, phosphate-activated glutaminase, glutamine synthetase, glutathione peroxidase and superoxide dismutase activities, glutamate, glutamine, malondialdehyde and glutathione contents in cerebral cortex were measured. Reactive oxygen species (ROS) and apoptosis were also estimated in cells. The results showed that the MeHg-induced neurotoxicity was significantly attenuated. GSPE significantly decreased the production of ROS, counteracted oxidative damage and increased the antioxidants and antioxidant enzymes activities in rats prior to MeHg exposure. Moreover, the effects on the rate of apoptotic cells and the disturbance of glutamate homeostasis were correspondingly modulated. These observations highlighted the potential of GSPE in offering protection against MeHg-induced neurotoxicity.  相似文献   

19.
目的:探讨不同声强超声对孕鼠子宫收缩及胎鼠神经损伤的影响及机制。方法:将32只孕鼠随机分为A(0)组、B(2)组、C(4)组、D(8)组,每组各8只,分别接受声强为0 W cm~(-2)、2 W cm~(-2)、4 W cm~(-2)和8 W cm~(-2)的超声辐照20 min。记录孕鼠子宫收缩及子宫平滑肌ATP酶的活力,检测胎鼠大脑皮层与海马神经元凋亡及胆碱能神经系统相关酶的活力。结果:超声增加孕鼠子宫收缩频率、收缩幅度、收缩张力和子宫活动度(P均0.05),降低孕鼠子宫平滑肌中钠钾ATP酶、钙ATP酶和钙镁ATP酶的活性(P均0.05)。超声降低胎鼠大脑皮层和海马中Bcl~(-2)水平(P0.05),增加Bax和Caspase-3水平(P均0.05)。以及促进乙酰胆碱酯酶活力,降低乙酰胆碱和乙酰胆碱转移酶水平(P均0.05)。且4 W cm~(-2)和8 W cm~(-2)的超声比2 W cm~(-2)超声对这些指标的作用更强。结论:4 W cm~(-2)和8 W cm~(-2)超声可能通过降低ATP酶的活性促进孕鼠子宫平滑肌收缩,并可引起胎鼠大脑皮层和海马神经元损伤,机制可能与胆碱能神经元系统失衡有关,2 W cm~(-2)声强的超声对胎鼠神经元损伤甚小。  相似文献   

20.
Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F1 generation rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号