首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
3.
Gymnema sylvestre is an important medicinal plant that bears bioactive compound namely gymnemic acid. In the present study, G. sylvestre was transformed by Agrobacterium rhizogenes. Seedling explants namely roots, stems, hypocotyls, cotyledonary nodal segments, cotyledons and young leaves were inoculated with A. rhizogenes strain KCTC 2703. Transformed (hairy) roots were induced from cotyledons and leaf explants. Six transgenic clones of hairy roots were established and confirmed by polymerase chain reaction (PCR) and RT-PCR using rolC specific primers. Hairy roots cultured using MS liquid medium supplemented with 3 % sucrose showed highest accumulation of biomass (97.63 g l?1 FM and 10.92 g l?1 DM) at 25 days, whereas highest accumulation of gymnemic acid content (11.30 mg g?1 DM) was observed at 20 days. Nearly 9.4-fold increment of biomass was evident in suspension cultures at 25 days of culture and hairy root biomass produced in suspension cultures possessed 4.7-fold higher gymnemic acid content when compared with the untransformed control roots. MS-based liquid medium was superior for the growth of hairy roots and production of gymnemic acid compared with other culture media evaluated (B5, NN and N6), with MS-based liquid medium supplemented with 3 % sucrose was optimal for secondary metabolite production. The current results showed great potentiality of hairy root cultures for the production of gymnemic acid.  相似文献   

4.
The marshmallow plant (Althaea officinalis L.) has been used for centuries in medicine and other applications. Valuable secondary metabolites have previously been identified in Agrobacterium rhizogenes-generated transgenic ‘hairy’ roots in this species. In the present study, transgenic roots were produced in A. officinalis using A. rhizogenes. In addition to wild-type lines, roots expressing the anti-human immunodeficiency virus microbicide candidate, cyanovirin-N (CV-N), were generated. Wild-type and CV-N root lines were transferred to liquid culture and increased in mass by 49 and 19 % respectively over a 7 day culture period. In the latter, the concentration of CV-N present in the root tissue was 2.4 μg/g fresh weight, with an average secretion rate into the growth medium of 0.02 μg/ml/24 h. A. officinalis transgenic roots may therefore in the future be used not only as a source of therapeutic secondary metabolites, but also as an expression system for the production of recombinant pharmaceuticals.  相似文献   

5.
The purpose of this study was to determine the daily dietary intake of uranium (U) by the general population of Catalonia, Spain. Uranium concentrations were measured in foods widely consumed by the population living in that autonomous community. Food samples were randomly acquired in 12 representative cities of Catalonia. The dietary intake of U was estimated for various age–gender groups: children, adolescents, adults, and seniors. Fish and seafood was the food group showing the highest U concentrations (0.090 μg/g of fresh weight (fw)), followed by dairy products (0.044 μg/g fw). In contrast, the lowest U levels were found in oils and fats (0.003 μg/g fw), while in tubers and milk, U was not detected in any sample. The estimated dietary intake of U for a standard male adult of 70 kg body weight living in Catalonia was 15.48 μg/day. According to the age/gender of the population, the highest dietary intake of U corresponded to children (20.32 μg/day), while senior females was the subgroup with the lowest U intake (10.04 μg/day). Based on the tolerable daily intake established for U, the current dietary intake of this metal by the general population of Catalonia should not mean health risks for any of the different age/gender groups of consumers.  相似文献   

6.
A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.  相似文献   

7.
Laser light scattering technology, as applied in the Lasentec focussed beam reflectance measurement (FBRM) system, was used to characterise two morphologically dissimilar plant cell suspension cultures, Morinda citrifolia and Centaurea calcitrapa. Shake-flask suspensions were analysed in terms of biomass concentration and aggregate size/shape over the course of typical batch growth cycles. For the heavily aggregated C. calcitrapa, biomass levels [from 10-160 g fresh weight (fw) l(-1))] were linearly correlated with FBRM counts. For M. citrifolia, which grows in unbranched chains of 2-10 elongated cells, linear correlation of biomass concentration with FBRM counts was applicable in the range 0-100 g fw l(-1); at higher levels (100-300 g fw l(-1)), biomass was non-linearly correlated with FBRM counts and length-weighted average FBRM chord length. For both cell systems, particle morphology (size/shape) was quantified using semi-automated digital image analysis. The average aggregate equivalent diameter (C. calcitrapa) and average chain length (M. citrifolia), determined using image analysis, closely tracked the FBRM average chord length. The data clearly demonstrate the potential for applying the FBRM technique for rapid characterisation of plant cell suspension cultures.  相似文献   

8.
Members of the aldo–keto reductase family including aldose reductases are involved in antioxidant defense by metabolizing a wide range of lipid peroxidation-derived cytotoxic compounds. Therefore, we produced transgenic wheat genotypes over-expressing the cDNA of alfalfa aldose reductase gene. These plants consequently exhibit 1.5–4.3 times higher detoxification activity for the aldehyde substrate. Permanent drought stress was generated in the greenhouse by growing wheat plants in soil with 20 % water capacity. The control and stressed plants were monitored by a semi automatic phenotyping platform providing computer-controlled watering, digital and thermal imaging. Calculation of biomass values was based on the correlation (R 2 = 0.7556) between fresh weight and green pixel-based shoot surface area. The green biomass production by plants of the three transgenic lines was 12–26–41 % higher than the non-transgenic plants’ grown under water limitation. Thermal imaging of stressed non-transgenic plants indicated an elevation in the leaf temperature. The thermal status of transformants was similar at both normal and suboptimal water regime. In drought, the transgenic plants used more water during the growing season. The described phenotyping platform provided a comprehensive data set demonstrating the improved physiological condition of the drought stressed transgenic wheat plants in the vegetative growth phase. In soil with reduced water capacity two transgenic genotypes showed higher seed weight per plant than the control non-transgenic one. Limitation of greenhouse-based phenotyping in analysis of yield potential is discussed.  相似文献   

9.
Ajuga bracteosa is a medicinally important plant globally used in the folk medicine against many serious ailments. In the present study, effects of two significant elicitors, methyl jasmonate (Me-J) and phenyl acetic acid (PAA) were studied on growth parameters, secondary metabolites production, and antioxidant potential in adventitious root suspension cultures of A. bracteosa. The results showed a substantial increase in biomass accumulation, exhibiting longer log phases of cultures growth in response to elicitor treatments, in comparison to control. Maximum dry biomass formation (8.88 DW g/L) was recorded on 32nd day in log phase of culture when  0.6 mg/L Me-J was applied; however, PAA at 1.2 mg/L produced maximum biomass (8.24 DW g/L) on day 40 of culture.  Furthermore, we observed the elicitors-induced enhancement in phenolic content (total phenolic content), flavonoid content (total flavonoid content) and antioxidant activity (free radical scavenging activity) in root suspension cultures of A. bracteosa. Application of 0.6 mg/L and 1.2 mg/L of Me-J, root cultures accumulated higher TPC levels (3.6 mg GAE/g DW) and (3.7 mg GAE/g DW) in the log phase and stationary phase, respectively, while 2.5 mg/L Me-J produced lower levels (1.4 mg GAE/g DW) in stationary phase of growth stages. Moreover, TFC and FRSA values were found in correspondence to TPC values in the respective growth phases at the similar elicitor treatment. Thus, a feasible protocol for establishment of adventitious roots in A. bracteosa was developed and enhancement in biomass and metabolite content in adventitious root was promoted through elicitation.  相似文献   

10.
This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.  相似文献   

11.
Soil salinity is a major environmental stress limiting plant productivity. Vacuole Na+/H+ antiporters play important roles for the survival of plants under salt stress conditions. We have developed salt stress tolerant transgenic tomato plants (Solanum lycopersicum cv. PED) by overexpression of the wheat Na+/H+ antiporter gene TaNHX2 using Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBin438 that contains the TaNHX2 gene under the control of double CaMV 35S promoter and npt II as a selectable marker. PCR and Southern blot analysis confirmed that TaNHX2 gene has been integrated and expressed in the T1 generation transgenic tomato plants. When TaNHX2 expressing plants were exposed to 100 or 150 mM NaCl, they were found to be more tolerant to salt stress compared to wild type plants. Biochemical analyses also showed that transgenic plants have substantial amount of relative water content and chlorophyll content under salt stress conditions compared to wild type plants. The relative water content in transgenic and wild type plants ranged from 68 to 75 % and 46–73 % and chlorophyll content fall in between 1.8 to 2.4 mg/g fw and 1.0 to 2.4 mg/g fw, respectively, in all stress conditions. In the present study, we observed a better germination rate of T1 transgenic seeds under salt stress conditions compared with wild type plants. Our results indicated that TaNHX2-transgenic tomato plants coped better with salt stress than wild type plants.  相似文献   

12.
Among five hairy root lines of Picrorhiza kurrooa that were established through Agrobacterium rhizogenes, one (H7) was selected for encapsulation due to high accumulation of picrotin and picrotoxinin (8.3 and 47.6 μg/g DW, respectively). Re-grown encapsulated roots induced adventitious shoots with 73 % frequency on MS medium supplemented with 0.1 μM 6-benzylaminopurine, following 6 months of storage at 25 °C. Regenerated plantlets had 85 % survival after 2 months. Regenerants were of similar morphotype having increased leaf number and branched root system as compared to non-transformed plants. The transformed nature of the plants was confirmed through PCR and Southern blot analysis. Genetic fidelity analysis of transformed plants using RAPD and ISSR showed 5.2 and 3.6 % polymorphism, respectively. Phytochemical analysis also showed that picrotin and picrotoxinin content were similar in hairy root line and its regenerants.  相似文献   

13.
Hairy root lines were induced from leaf explants of Rauwolfia serpentina known to contain high levels of reserpine (0.0882 % DW) content. Out of five high yielding hairy root lines, three (R1, R14 and R15) exhibited spontaneous regeneration of shoots after 6–8 weeks in liquid B5 medium. Excised regenerated shoots underwent robust shoot proliferation when cultured on Murashige and Skoog (MS) medium supplemented with 0.1 mg/l naphthanleneacetic acid (NAA) and 1.0 mg/l 6-benzyladenine. When shoots were transferred to a root induction medium, consisting of MS basal medium and 1.0 mg/l NAA, all rooted within 2–3 weeks. Of a total of 45 plants developed from three different hairy root lines, 30 were successfully acclimatized and transferred to the green house. Almost 90 % of these plants grown in the green house showed no observed phenotypic differences, while 10 % were stunted and grew poorly, in comparison to non-transformed plants. Phenotypic assessment of regenerated plants for plant length, number of nodes and intermodal lengths, number of leaves per node, leaf color, leaf size, number of flowering shoots, flower size, fruit size, lateral root branching and root biomass was conducted. Polymerase chain reaction and Southern blot hybridization revealed that all plants derived from hairy roots carried the Ri TL-DNA fragment. Moreover for plants derived from transgenic hairy root line R14, presence of more than a single transgene copy number was observed, and this might have contributed to observed abnormal phenotypes. Analysis of reserpine content revealed that roots of regenerated plants had similar levels (0.0889 % DW) to those of their corresponding hairy roots.  相似文献   

14.
Withanolide is one of the most extensively exploited steroidal lactones, which are biosynthesized in Withania somnifera. Its production from cell suspension culture was analyzed to defeat limitations coupled with its regular supply from the plant organs. In order to optimize the different factors for sustainable production of withanolides and biomass accumulations, different concentrations of auxins or cytokinins and their combinations, carbon sources, agitation speed, organic additives and seaweed extracts was studied in cell suspension culture. Maximum biomass accumulation (16.72 g fresh weight [FW] and 4.18 g dry weight [DW]) and withanolides production (withanolide A 7.21 mg/g DW, withanolide B 4.23 mg/g DW, withaferin A 3.88 mg/g DW and withanone 6.72 mg/g DW) were achieved in the treatment of Gracilaria edulis extract at 40 % level. Organic additive l-glutamine at 200 mg/l in combination with picloram (1 mg/l) and KN (0.5 mg/l) promoted growth characteristics (11.87 g FW and 2.96 g DW) and withanolides synthesis (withanolide A 5.04 mg/g DW, withanolide B 2.59 mg/g DW, withaferin A 2.36 mg/g DW and withanone 4.32 mg/g DW). Sucrose at 5 % level revolved out to be a superior carbon source yielded highest withanolides production (withanolide A 2.88 mg/g DW, withanolide B 1.48 mg/g DW, withaferin A 1.35 mg/g DW and withanone 2.47 mg/g DW), whereas biomass (7.28 g FW and 1.82 g DW) was gratefully increased at 2 % level of sucrose in cell suspension culture. This optimized protocol can be utilized for large scale cultivation of W. somnifera cells in industrial bioreactors for mass synthesis of major withanolides.  相似文献   

15.
A protocol has been standardized for establishment and characterization of cell suspension cultures of Stevia rebaudiana in shake flasks, as a strategy to obtain an in vitro stevioside producing cell line. The effect of growth regulators, inoculum density and various concentrations of macro salts have been analyzed, to optimize the biomass growth. Dynamics of stevioside production has been investigated with culture growth in liquid suspensions. The callus used for this purpose was obtained from leaves of 15-day-old in vitro propagated plantlets, on MS medium fortified with benzyl aminopurine (8.9 μM) and naphthalene acetic acid (10.7 μM). The optimal conditions for biomass growth in suspension cultures were found to be 10 g l?1 of inoculum density on fresh weight basis in full strength MS liquid basal medium of initial pH 5.8, augmented with 2,4-dichlorophenoxy acetic acid (0.27 μM), benzyl aminopurine (0.27 μM) and ascorbic acid (0.06 μM), 1.0× NH4NO3 (24.7 mM), 3.0× KNO3 (56.4 mM), 3.0× MgSO4 (4.5 mM) and 3.0× KH2PO4 (3.75 mM), in 150 ml Erlenmeyer flask with 50 ml media and incubated in dark at 110 rpm. The growth kinetics of the cell suspension culture has shown a maximum specific cell growth rate of 3.26 day?1, doubling time of 26.35 h and cell viability of 75 %, respectively. Stevioside content in cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The results of present study are useful to scale-up process and augment the S. rebaudiana biological research.  相似文献   

16.
To enhance the production of terpenoid indole alkaloids in Rauwolfia serpentina, Catharanthus tryptophan decarboxylase (Crtdc) gene was over-expressed in transgenic hairy root cultures using Agrobacterium rhizogenes-mediated transformation. Among six transgenic hairy root lines, line RT4 accumulated the highest alkaloid content, with 0.1202 % dry weight (DW) reserpine and 0.0064 % DW ajmalicine, after 10 weeks of culture. Whereas, wild-type roots accumulated 0.0596 ± 0.003 % DW reserpine and 0.0011 ± 0.001 % DW ajmalicine. Transgenic hairy root line RT7 produced the lowest alkaloid content (reserpine: 0.0896 ± 0.002 % DW; ajmalicine: 0.002 ± 0.0 % DW). On the basis of alkaloid content the six hairy root lines were grouped as RT4/RT2 > RT3/RT5 > RT7/RT8. Analysis of gene expression profile indicated that Crtdc was expressed at a higher level in transgenic lines, which could be correlated with enhanced metabolite accumulation in roots. This study confirms that over-expression of Crtdc is a superlative method to improve the biosynthetic potential of Rauwolfia hairy root cultures. Enhanced reserpine and ajmalicine production can serve as an alternative choice to provide resources for relative pharmaceutical industries.  相似文献   

17.
The alkaloid patterns of sea daffodil (Pancratium maritimum L.) shoot culture, cultivated in a temporary immersion cultivation system were investigated. The shoots accumulated maximal amounts of biomass (0.8 g dry biomass/L and Growth Index?=?1.6) at immersion frequency with 15 min flooding and 12 h stand-by periods. At this regime P. maritimum shoots achieved the highest degree of utilization of carbon source. Twenty-two alkaloids, belonging to narciclasine, galanthamine, haemanthamine, lycorine, montanine, tazettine, homolycorine and tyramine types were identified in intracellular and extracellular alkaloid extracts. The immersion frequency affected strongly the capacity of alkaloid biosynthesis in P. maritimum shoots and at the optimum conditions of cultivation, the total intracellular alkaloid content reached up to 3,469 μg/g dry biomass. The main biosynthesized alkaloids were haemanthamine (900.1 μg/g) and lycorine (799.9 μg/g). The obtained results proved that temporary immersion technology, as a cultivation approach, and P. maritimum shoots, as a biological system, are prospective for producing wide range bioactive alkaloids.  相似文献   

18.
The influence of Gracilaria edulis and Sargassum wightii extracts was investigated for the production of biomass and withanolides in the multiple shoot suspension culture of Withania somnifera. Supplementation of 40 % G. edulis extract in MS liquid medium for 24 h exposure time in the culture recorded the highest biomass accumulation [62.4 g fresh weight and 17.82 g dry weight (DW)] and withanolides production (withanolide A 0.76 mg/g DW; withanolide B 1.66 mg/g DW; withaferin A 2.80 mg/g DW and withanone 2.42 mg/g DW) after 5 weeks of culture, which were 1.45–1.58-fold higher than control culture. This naturally available G. edulis extract-treated multiple shoot suspension culture protocol offers a potential alternative for the optimum production of biomass and withanolides utilizing shake-flasks.  相似文献   

19.

Key message

ANN-based combinatorial model is proposed and its efficiency is assessed for the prediction of optimal culture conditions to achieve maximum productivity in a bioprocess in terms of high biomass.

Abstract

A neural network approach is utilized in combination with Hidden Markov concept to assess the optimal values of different environmental factors that result in maximum biomass productivity of cultured tissues after definite culture duration. Five hidden Markov models (HMMs) were derived for five test culture conditions, i.e. pH of liquid growth medium, volume of medium per culture vessel, sucrose concentration (%w/v) in growth medium, nitrate concentration (g/l) in the medium and finally the density of initial inoculum (g fresh weight) per culture vessel and their corresponding fresh weight biomass. The artificial neural network (ANN) model was represented as the function of these five Markov models, and the overall simulation of fresh weight biomass was done with this combinatorial ANN–HMM. The empirical results of Rauwolfia serpentina hairy roots were taken as model and compared with simulated results obtained from pure ANN and ANN–HMMs. The stochastic testing and Cronbach’s α-value of pure and combinatorial model revealed more internal consistency and skewed character (0.4635) in histogram of ANN–HMM compared to pure ANN (0.3804). The simulated results for optimal conditions of maximum fresh weight production obtained from ANN–HMM and ANN model closely resemble the experimentally optimized culture conditions based on which highest fresh weight was obtained. However, only 2.99 % deviation from the experimental values could be observed in the values obtained from combinatorial model when compared to the pure ANN model (5.44 %). This comparison showed 45 % better potential of combinatorial model for the prediction of optimal culture conditions for the best growth of hairy root cultures.  相似文献   

20.

Key message

Dammarenediol-II is biologically active tetracyclic triterpenoid, which is basic compound of ginsenoside saponin. Here, we established the dammarenediol-II production via a cell suspension culture of transgenic tobacco overexpressing PgDDS.

Abstract

Dammarenediol-II synthase catalyzes the cyclization of 2,3-oxidosqualene to dammarenediol-II, which is the basic triterpene skeleton in dammarene-type saponin (ginsenosides) in Panax ginseng. Dammarenediol-II is a useful candidate both for pharmacologically active triterpenes and as a defense compound in plants. Dammarenediol-II is present in the roots of P. ginseng in trace amounts because it is an intermediate product in triterpene biosynthesis. In this work, we established the production of dammarenediol-II via cell suspension culture of transgenic tobacco. The dammarenediol-II synthase gene (PgDDS) isolated from P. ginseng was introduced into the Nicotiana tobacum genome under the control of 35S promoter by Agrobacterium-mediated transformation. Accumulation of dammarenediol-II in transgenic tobacco plants occurred in an organ-specific manner (roots > stems > leaves > flower buds), and transgenic line 14 (T14) exhibited a high amount (157.8 μg g?1 DW) of dammarenediol-II in the roots. Dammarenediol-II production in transgenic tobacco plants resulted in reduced phytosterol (β-sitosterol, campesterol, and stigmasterol) contents. A cell suspension culture was established as a shake flask culture of a callus derived from root segments of transgenic (T14) plants. The amount of dammarenediol-II production in the cell suspension reached 573 μg g?1 dry weight after 3 weeks of culture, which is equivalent to a culture volume of 5.2 mg dammarenediol-II per liter. Conclusively, the production of dammarenediol-II in a cell suspension culture of transgenic tobacco can be applied to the large-scale production of this compound and utilized as a source of pharmacologically active medicinal materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号