首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytoplankton population dynamics play an important role in biogeochemical cycles in the Southern Ocean during austral summer. However, the relationship between phytoplankton community composition and primary productivity remains elusive in this region. We investigated the community composition and photosynthetic physiology of surface phytoplankton assemblages in the Australian sector of the Southern Ocean from December 2010 to January 2011. There were significant latitudinal variations in hydrographic and biological parameters along 110°E and 140°E. Surface (5 m) chlorophyll a (chl a) concentrations measured with high-performance liquid chromatography varied between 0.18 and 0.99 mg m?3. The diatom contribution to the surface chl a biomass increased in the south, as estimated with algal chemotaxonomic pigment markers, while the contributions of haptophytes and chlorophytes decreased. In our photosynthesis–irradiance (PE) curve experiment, the maximum photosynthetic rate normalized to chl a ( \(P_{ \hbox{max} }^{*}\) ), initial slope (α *), the maximum quantum yield of carbon fixation (Φ c max), and the photoinhibition index (β *) were higher in the region where diatoms contributed >50 % to the chl a biomass. In addition, there were statistically significant correlations between the diatom contribution to the chl a biomass and the PE parameters. These results suggested that the changes in the phytoplankton community composition, primarily in diatoms, could strongly affect photosynthetic physiology in the Australian sector of the Southern Ocean.  相似文献   

2.
The effect of irradiance and temperature on the photosynthesis of the red alga, Pyropia tenera, was determined for maricultured gametophytes and sporophytes collected from a region that is known as one of the southern limits of its distribution in Japan. Macroscopic gametophytes were examined using both pulse‐amplitude modulated fluorometry and/or dissolved oxygen sensors. A model of the net photosynthesis–irradiance (P‐E) relationship of the gametophytes at 12°C revealed that the net photosynthetic rate quickly increased at irradiances below the estimated saturation irradiance of 46 μmol photons m?2 s?1, and the compensation irradiance was 9 μmol photons m?2 s?1. Gross photosynthesis and dark respiration for the gametophytes were also determined over a range of temperatures (8–34°C), revealing that the gross photosynthetic rates of 46.3 μmol O2 mgchl‐a?1 min?1 was highest at 9.3 (95% Bayesian credible interval (BCI): 2.3–14.5)°C, and the dark respiration rate increased at a rate of 0.93 μmol O2 mgchl‐a?1 min?1°C?1. The measured dark respiration rates ranged from ?0.06 μmol O2 mgchl‐a?1 min?1 at 6°C to ?25.2 μmol O2 mgchl‐a?1 min?1 at 34°C. The highest value of the maximum quantum yield (Fv/Fm) for the gametophytes occurred at 22.4 (BCI: 21.5–23.3) °C and was 0.48 (BCI: 0.475–0.486), although those of the sporophyte occurred at 12.9 (BCI: 7.4–15.1) °C and was 0.52 (BCI: 0.506–0.544). This species may be considered well‐adapted to the current range of seawater temperatures in this region. However, since the gametophytes have such a low temperature requirement, they are most likely close to their tolerable temperatures in the natural environment.  相似文献   

3.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

4.
The turnover of chlorophyll a (chl a) was investigated in the diatom Thalassiosira weissflogii (Grunow) Fryxell and Hasle using a new method based on the incorporation of 14C into chl a. The alga was maintained in its exponential growth phase under continuous light; 14C was supplied as bicarbonate. The time course of label accumulation into the tetrapyrrole ring and the phytol side chain was determined for time periods equivalent to 1–2 cell doublings. The labeling kinetics of the tetrapyrrole ring and the phytol side chain were described satisfactorily by a simple precursor-pigment model with two free parameters, the precursor turnover rate and the pigment turnover rate, both having dimensions of time?1. The model was fit to the experimental data to determine the values of these two free parameters. The turnover rates of the tetrapyrrole ring and the phytol side chain were not significantly different, ranging from 0.01 to 0.1 per day. These rates are equivalent to turnover times ranging from days to weeks. Growth rate-normalized turnover rates did not vary with irradiance (7.5–825 μE · m?2· s?1). The precursor turnover rates of the tetrapyrrole ring and the phytol side chain differed by an order of magnitude. These results indicate that chl a is not degraded significantly in cultures of T. weissflogii grown under continuous light. Neither irradiance nor growth rate affected growth rate-normalized chlorophyll turnover rates. Our results are inconsistent with the hypothesis that steady-state cellular concentrations of chl a are maintained by a dynamic equilibrium between rates of synthesis and degradation.  相似文献   

5.
This study examined how light and temperature interact to influence growth rates, chl a, and photosynthetic efficiency of the oceanic pennate diatom Pseudo‐nitzschia granii Hasle, isolated from the northeast subarctic Pacific. Growth rates were modulated by both light and temperature, although for each irradiance tested, the growth rate was always the greatest at ~14°C. Chl a per cell was affected primarily by temperature, except at the maximum chl a per cell (at 10°C) where the effects of light were noticeable. At both ends of the temperature gradient, cells displayed evidence of chlorosis even at low light intensities. Chl fluorescence data suggested that cells at 8°C were significantly more efficient in their photosynthetic processes than cells at 20°C, despite having comparable concentrations of chl. Cells at low temperature showed photosynthetic characteristics similar to high‐irradiance‐adapted cells. The decline of growth rates beyond the optimum growth temperature coincided with the cell's inability to accumulate chl in response to increasing temperature. The decline in photosynthetic ability at 20°C was likely due to a combination of high‐temperature stress on cellular membranes and a decline in chl. Our results highlight the important interactions between light and temperature and the need to incorporate these interactions into the development of phytoplankton models for the subarctic Pacific.  相似文献   

6.
Phenology, irradiance, and temperature characteristics of an edible brown alga, Undaria pinnatifida (Laminariales), were examined from the southernmost natural population in Japan, both by culturing gametophytes and examining the photosynthetic activity of sporophytes using dissolved oxygen sensors and pulse amplitude-modulated chlorophyll fluorometer (IMAGING-PAM). Our surveys confirmed that sporophytes were present between winter and early summer, but absent by July. IMAGING-PAM experiments were used to measure maximum effective quantum yield (ΦII at 0 μmol photons m?2 s?1) for each of 14 temperatures (8–36 °C). Oxygen production was also determined over a coarser temperature gradient. Net photosynthesis and ΦII (at 0 μmol photons m?2 s?1) were observed to be temperature-dependent; the maximum ΦII was estimated to be 0.67, occurred at 21.2 °C, and was nearly identical to the optimal temperature of the net photosynthetic rate (21.7 °C). A net photosynthesis–irradiance (P–E) model revealed that saturation irradiance (E k) was 119.5 μmol photons m?1 s?1, and the compensation irradiance (E c) was 17.4 μmol photons m?1 s?1. Culture experiments on the gametophytes revealed that most individuals could not survive temperatures over 28 °C and that growth rates were severely inhibited. Based on our observations, temperatures greater than 20 °C are likely to influence photosynthetic activity and gametophyte survival, and therefore, it is possible that this species might become locally extinct if seawater temperatures in this region continue to rise.  相似文献   

7.
Regenerants from tobacco(Nicotiana tabacum L. cv. White Burley) leaf segments cultivatedin vitro in vessels with solid agar medium under usual conditions (plantlets) grew under very low irradiance (I = 40 μxmol m?2 s?1), very high relative humidity (more than 90%) and decreased CO2 concentration (ca) during light period. In comparison with seedlings of a similar number of leaves and similar total leaf area grown in sand and nutrient solution, the plantlets had lower dry mass of shoots and roots per plant and thinner leaves almost without trichomes and epicuticular waxes. Due to a low transpiration rate under high relative humidity the water potential of plantlet leaves was higher than that of seedling leaves and the difference in water potential between leaves and medium was lowei. The rate of water loss from leaves detached from plantlets was considerably faster than that from seedlings under the same conditions (I = 110 μrnol m?2; s?1, temperature 30 °C, relative humidity 50 %). Net photosynthetie rates (Pn) of leaves of plantlets and seedlings measured under saturating I, natural ca and the leaf temperature 20 °C were similar, nevertheless the shape of curves relating Pn to c» indicated some differences in photosynthetie parameters(e.g. saturation of Pn under lower ca> higher CO2 compensation concentration in plantlets than in seedlings). Similarly compensation and saturating I were lower in plantlets than in seedlings. The shape of transpiration curves as well as the expressive linear phases of PN(ca) and PN(I) curves of plantlet leaves indicated ineffective stomatal control of gas exchance. These results were confirmed by microscopic observations of stomatal movementsin situ  相似文献   

8.
The common and routine procedure for the quantification of chlorophyll a (chl a) in aquatic studies has a series of steps. Here, we sought to find optimal conditions for phytoplankton cell harvesting, chl a extraction, and chl a measurement and calculation, to find an effective, cost-saving, safe, and environment-friendly procedure for determining phytoplankton chl a concentration. We replaced the traditional GF/C filters with inorganic polymer flocculants (IPFs) and clay for phytoplankton harvesting, and then various solvents (acetone, ethanol, DMF, and DMSO), IPFs (PAC, PFS, and PAFS) and clay were tested for their suitability for chl a extraction, with or without homogenization at different temperatures for different extraction durations. About 0.3–1.0 g l?1 of PAC or PFSA combined with 1.0–2.5 g l?1 clay were found to provide optimal conditions in terms of yield and cost for phytoplankton cell harvesting from water samples. Based on our results, we recommend flocculation and centrifugation instead of glass-fiber membrane filtration for harvesting phytoplankton cells from environmental water samples, 95% ethanol for chl a extraction without homogenization and heating, and spectrophotometry to determine chl a concentration.  相似文献   

9.
The chlorophyll (Chl) fluorescence induction kinetics, net photosynthetic CO2 fixation rates P N, and composition of photosynthetic pigments of differently light exposed leaves of several trees were comparatively measured to determine the differences in photosynthetic activity and pigment adaptation of leaves. The functional measurements were carried out with sun, half-shade and shade leaves of seven different trees species. These were: Acer platanoides L., Ginkgo biloba L., Fagus sylvatica L., Platanus x acerifolia Willd., Populus nigra L., Quercus robur L., Tilia cordata Mill. In three cases (beech, ginkgo, and oak), we compared the Chl fluorescence kinetics and photosynthetic rates of blue-shade leaves of the north tree crown receiving only blue sky light but no direct sunlight with that of sun leaves. In these cases, we also determined in detail the pigment composition of all four leaf types. In addition, we determined the quantum irradiance and spectral irradiance of direct sunlight, blue skylight as well as the irradiance in half shade and full shade. The results indicate that sun leaves possess significantly higher mean values for the net CO2 fixation rates P N (7.8–10.7 μmol CO2 m?2 s?1 leaf area) and the Chl fluorescence ratio R Fd (3.85–4.46) as compared to shade leaves (mean P N of 2.6–3.8 μmol CO2 m?2 s?1 leaf area.; mean R Fd of 1.94–2.56). Sun leaves also exhibit higher mean values for the pigment ratio Chl a/b (3.14–3.31) and considerably lower values for the weight ratio total chlorophylls to total carotenoids, (a + b)/(x + c), (4.07–4.25) as compared to shade leaves (Chl a/b 2.62–2.72) and (a + b)/(x + c) of 5.18–5.54. Blue-shade and half-shade leaves have an intermediate position between sun and shade leaves in all investigated parameters including the ratio F v/F o (maximum quantum yield of PS2 photochemistry) and are significantly different from sun and shade leaves but could not be differentiated from each other. The mean values of the Chl fluorescence decrease ratio R Fd of blue-shade and half-shade leaves fit well into the strong linear correlation with the net photosynthetic rates P N of sun and shade leaves, thus unequivocally indicating that the determination of the Chl fluorescence decrease ratio R Fd is a fast and indirect measurement of the photosynthetic activity of leaves. The investigations clearly demonstrate that the photosynthetic capacity and pigment composition of leaves and chloroplasts strongly depend on the amounts and quality of light received by the leaves.  相似文献   

10.
Growth rate, pigment composition, and noninvasive chl a fluorescence parameters were assessed for a noncalcifying strain of the prymnesiophyte Emiliania huxleyi Lohman grown at 50, 100, 200, and 800 μmol photons·m?2·s?1. Emiliania huxleyi grown at high photon flux density (PFD) was characterized by increased specific growth rates, 0.82 d?1 for high PFD grown cells compared with 0.38 d?1 for low PFD grown cells, and higher in vivo chl a specific attenuation coefficients that were most likely due to a decreased pigment package, consistent with the observed decrease in cellular photosynthetic pigment content. High PFD growth conditions also induced a 2.5‐fold increase in the pool of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin responsible for dissipation of excess energy. Dark‐adapted maximal photochemical efficiency (Fv/Fm) remained constant at around 0.58 for cells grown over the range of PFDs, and therefore the observed decline, from 0.57 to 0.33, in the PSII maximum efficiency in the light‐adapted state, (Fv′/Fm′), with increasing growth PFD was due to increased dissipation of excess energy, most likely via the xanthophyll cycle and not due to photoinhibition. The PSII operating efficiency (Fq′/Fm′) decreased from 0.48 to 0.21 with increasing growth PFD due to both saturation of photochemistry and an increase in nonphotochemical quenching. The changes in the physiological parameters with growth PFD enable E. huxleyi to maximize rates of photosynthesis under subsaturating conditions and protect the photosynthetic apparatus from excess energy while supporting higher saturating rates of photosynthesis under saturating PFDs.  相似文献   

11.
Reef-building corals live in symbiosis with dinoflagellates that translocate a large proportion of their photosynthetically fixed carbon compounds to their coral host for its own metabolism. The carbon budget and translocation rate, however, vary depending on environmental conditions, coral host species, and symbiont clade. To quantify variability in carbon translocation in response to environmental conditions, this study assessed the effect of two different irradiance levels (120 and 250 μmol photons m?2 s?1) and feeding regimes (fed with Artemia salina nauplii and unfed) on the carbon budget of the tropical coral Stylophora pistillata. For this purpose, H13CO3 ?-enriched seawater was used to trace the conversion of photosynthetic carbon into symbiont and coral biomass and excrete particulate organic carbon. Results showed that carbon translocation (ca. 78 %) and utilization were similar under both irradiance levels for unfed colonies. In contrast, carbon utilization by fed colonies was dependent on the growth irradiance. Under low irradiance, heterotrophy was accompanied by lower carbon translocation (71 %), higher host and symbiont biomass, and higher calcification rates. Under high irradiance, heterotrophy was accompanied by higher rates of photosynthesis, respiration, and carbon translocation (90 %) as well as higher host biomass. Hence, levels of resource sharing within coral–dinoflagellate symbioses depend critically on environmental conditions.  相似文献   

12.
We determined the effects of two nitrogen sources (ammonium and nitrate) and two irradiance levels (50 and 200 μmol photons m?2 s?1) on the growth rate, cell size, proximate composition, pigment content, and photosynthesis of the unicellular red alga, Porphyridium cruentum. Irradiance significantly affects growth rate, as well as carbohydrate, protein, and phycoerythrin content. Nitrogen form significantly affects cell size, total dry weight, organic dry weight, ash content, carotene content, phycocyanin content, allophycocyanin content, maximum relative electron transport rate (rETRm), and photosynthetic efficiency (α). However, the irradiance and nitrogen source had significantly interaction with the content of lipids and chlorophyll a content, relative electron transport rate (rETR), and irradiance of saturation (Ik). These findings demonstrate that irradiance and nitrogen source influence the metabolism of P. cruentum and that the combination of these two variables induces the production of chemical products for biotechnological, aquaculture, and nutraceutical industry.  相似文献   

13.
Abstract

The aim of this study was to quantify algal colonisation on anthropogenic surfaces (viz. building facades and roof tiles) using chlorophyll a (chl a) as a specific biomarker. Chl a was estimated as the initial fluorescence F0 of ‘dark adapted’ algae using a pulse-modulated fluorometer (PAM-2000). Four isolates of aeroterrestrial green algae and one aquatic isolate were included in this study. The chl a concentration and F0 showed an exponential relationship in the tested range between 0 and 400 mg chl a m?2. The relationship was linear at chl a concentrations <20 mg m?2. Exponential and linear models are presented for the single isolates with large coefficients of determination (exponential: r2 > 0.94, linear: r2 > 0.92). The specific power of this fluorometric method is the detection of initial algal colonisation on surfaces in thin or young biofilms down to 3.5 mg chl a m?2, which corresponds to an abundances of the investigated isolates between 0.2 and 1.5 million cells cm?2.  相似文献   

14.
The effects of several physiological parameters on H2 production rate in the unicellular halotolerant cyanobacterium Aphanothece halophytica were investigated. Under nitrogen deprivation, the growth of cells was inhibited, but H2 production rate was enhanced approximately fourfold. Interestingly, cells grown under sulfur deprivation exhibited a decrease in cell growth, H2 production rate, and bidirectional hydrogenase activity. Glucose was the preferred sugar source for H2 production by A. halophytica, but H2 production decreased at high glucose concentrations. H2 production rate was optimum when cells were grown in the presence of 0.75 M?NaCl, or 0.4 μM?Fe3+, or 1 μM?Ni2+. The optimum light intensity and temperature for H2 production were 30 μmol photons m?2?s?1 and 35 °C, respectively. A two-stage culture of A. halophytica was performed in order to overcome the reduction of cell growth in N-free medium. In the first stage, cells were grown in normal medium to accumulate biomass, and in the second stage, H2 production by the obtained biomass was induced by growing cells in N-free medium supplemented with various chemicals for 24 h. A. halophytica grown in N-free medium containing various MgSO4 concentrations had a high H2 production rate between 11.432 and 12.767 μmol H2 mg?chlorophyll a (chl a)?1?h?1, a 30-fold increase compared to cells grown in normal medium. The highest rate of 13.804 μmol H2 mg?chl a ?1?h?1 was obtained when the N-free growth medium contained 0.4 μM Fe3+. These results suggested the possibility of using A. halophytica and some other halotolerant cyanobacteria thriving under extreme environmental conditions in the sea as potential sources for H2 production in the future.  相似文献   

15.
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a strong influence on larval and post-larval development. Biochemical composition is known to be related to culture conditions, among which light represents a major source of variation. The effects of blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 were assessed in chemostat at a single irradiance (300 μmol photons m?2 s?1) and compared with white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d?1. Relative carbohydrate content was lower under blue light than under white light at both dilution rates, whereas chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein content higher under blue light than under white light, but only at 0.7 d?1. Despite these metabolic differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to carbon ratio and photosynthetic activity were higher at 0.7 d?1 than at 0.2 d?1, while carbon quota and carbohydrate content were lower. Our results show that blue light may influence microalgal metabolism without reducing productivity for a given growth rate, a result that should be of great interest for microalgal production in aquaculture.  相似文献   

16.
Effects of three levels of photosynthetic photon flux (PPF: 60, 160 and 300 μmol m−2s−1) were investigated in one-month-old Phalaenopsis plantlets acclimatised ex vitro. Optimal growth, chlorophyll and carotenoid concentations, and a high carotenoid:chlorophyll a ratio were obtained at 160 μmol m−2s−1, while net CO2 assimilation (A), stomatal conductance (g), transpiration rate (E) and leaf temperature peaked at 300 μmol m−2s−1, indicating the ability of the plants to grow ex vitro. Adverse effects of the highest PPF were reflected in loss of chlorophyll, biomass, non-protein thiol and cysteine, but increased proline. After acclimatisation, glucose-6-phosphate dehydrogenase, shikimate dehydrogenase, phenylalanine ammonia-lyase (PAL) and cinnamyl alcohol dehydrogenase (CAD) increased, as did lignin. Peroxidases (POD), which play an important role in lignin synthesis, were induced in acclimatised plants. Polyphenol oxidase (PPO) and β-glucosidase (β-GS) activities increased to a maximum in acclimatised plants at 300 μmol m−2s−1. A positive correlation between PAL, CAD activity and lignin concentration was observed, especially at 160 and 300 μmol m−2s−1. The study concludes that enhancement of lignin biosynthesis probably not only adds rigidity to plant cell walls but also induces defence against radiation stress. A PPF of 160 μmol m−2s−1was suitable for acclimatisation when plants were transferred from in vitro conditions.  相似文献   

17.
This study aims at establishing a temporary immersion technique for large-scale propagation of cocoyam (Xanthosoma sagittifolium). Sucrose was experimented with as a determinant factor for shoot multiplication in this culture system. The highest proliferation rate (68 ± 7) occurred with 20 g l?1 sucrose in the culture medium. This concentration appeared to be the optimal amount due to its promoting effect on plantlet development. The acclimatized plantlets showed a continuous effect of sucrose treatment during ex vitro growth, especially in low sucrose concentration. This fact is evidenced by the low survival rate (0.13 ± 0.12) and the poor chlorophyll content (1.180 ± 0.076 mg g?1) recorded on plantlets derived from 15 g l?1 of sucrose. The treatment with 60 g l?1 of sucrose prior to acclimatization was efficient for roots induction and elongation. The analysis of pH revealed a fluctuation from one subculture to another, with an overall pH decrease under all treatments tested and, thus, indicates that plants release proton during growth. This feature had an impact on in vitro plantlets growth. The potentiality of the temporary immersion technique to foster the production of Xanthosoma sagittifolium is discussed.  相似文献   

18.
Light source can affect the stomata opening, photosynthesis process, and pigment content in microalgae cells. In this study, growth rate, chlorophyll a (chl a) content, and electrogenic capability of Desmodesmus sp. A8 were investigated under incandescent and fluorescent lamps. Growth rate, productivity, and chl a content of strain A8 exposed to incandescent light were recorded as 0.092 ± 0.010 day?1, 0.019 ± 0.008 g L?1 day?1, and 15.10 ± 1.40 mg L?1, which decreased to 0.086 ± 0.006 day?1, 0.012 ± 0.004 g L?1 day?1, and 10.06 ± 1.59 mg L?1, respectively, under fluorescent light. The stable current density of bioelectrochemical systems inculcated with strain A8 under incandescent and fluorescent lamps were 249.76 and 158.41 mA m?2 at ?0.4 V vs. Ag/AgCl, coupling with dissolved oxygen within biofilm decreasing from 15.91 to 10.80 mg L?1. This work demonstrated that illuminating microalgae under an incandescent lamp can improve biomass production and electrogenic capabilities.  相似文献   

19.
Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.  相似文献   

20.
This study examines the seasonal physiological response of the codominant, perennial brown algae Lobophora variegata (Lamour.) Womers. and Zonaria tournefortii (Lamour.) Mont. to experimental temperatures approximating the seasonal range of their North Carolina continental shelf habitat. Respiration rates of Lobophora over experimental temperatures (10, 21, 27, and 34°C) seasonally varied, suggesting an acclimation response. The respiration rates of both species at experimental temperatures were generally lower for plants collected in the winter than for those tested in summer, which might enhance winter survival, when seasonally low irradiance might limit photosynthesis. Photosynthetic performance for both species showed significant physiological acclimation throughout the study period. Notably, both species had distinctive seasons of optimal photosynthetic performance. For example, photosynthetic performance at temperatures closest to ambient ranged from 30 (in September) to about 65 (in January and May) nmol O2·nmol Chla?1·h?1 for Lobophora. In contrast, lowest photosynthetic rate (40 nmolO2·nmolChla?1 · h?1) for Zonaria occurred in January; highest photosynthetic performance occurred in May (78 nmolO2 · nmolChla?1·h?1). This difference in their photosynthetic performance may contribute to their continued coexistence in a habitat characterized by large seasonal temperature fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号