首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hydrogenase from Paracoccus denitrificans, which is an intrinsic membrane protein, has been solubilised from membranes by Triton X-100. The partial specific volume of the solubilised protein has been determined using sucrose density gradient centrifugation in H2O and 2H2O. The values of the specific volumes of hydrogenase, measured in the presence or absence of Triton X-100, are 0.73 and 0.74 ml . g-1, respectively, indicating that hydrogenase binds much less than one micelle of Triton X-100. The sedimentation coefficient of hydrogenase is increased from 10.4 S to 15.9 S on removal of detergent. The Stokes' radius of hydrogenase, determined by gel filtration on Sepharose 6B, is 5.5 nm in the presence of Triton X-100 compared to 6.7 nm in the absence of detergent. The apparent molecular weight therefore increases from 242,500 to 466,000 on removal of detergent. In the presence of urea and sodium dodecylsulphate, the hydrogenase has an apparent molecular weight of 63,000. The enzyme therefore behaves as a non-covalently linked tetramer in the presence of Triton X-100. Removal of Triton X-100 results in association of tetramers to form octamers.  相似文献   

2.
W L Dean  C P Suárez 《Biochemistry》1981,20(7):1743-1747
The interaction of Triton X-100 and other nonionic detergents with a delipidated preparation of the Ca2+ ATPase from sarcoplasmic reticulum has been studied. Binding of radiolabeled Triton X-100 was determined by column chromatography at 6 degrees C, and two classes of binding sites were observed. Below the critical micelle concentration (cmc), binding of Triton occurred at 35-40 equivalent sites on the delipidated ATPase with a binding constant of 2.7 X 10(4) M-1. Near the cmc cooperative binding of an additional 70 molecules of the detergent was observed. The binding of monomeric Triton X-100 below the cmc was associated with a parallel activation of over half of the ATPase activity, and the remainder of the activity was recovered after the detergent concentration was increased to the cmc. The ability to reactivate ATPase activity was more dependent on the polar poly(oxyethylene) portion of nonionic detergents than on the hydrocarbon portion. Generalizing for all amphiphiles, these results suggest that there are discrete binding sites on the Ca2+ ATPase for phospholipid molecules in the native membrane and that the polar head groups of phospholipids interact more strongly with the protein than the hydrophobic acyl chains. Perturbations in micelle structure were observed for several nonionic detergents by measurement of cis-parinaric acid fluorescence and differential scanning calorimetry, and discontinuities in Arrhenius plots occurred at the transition temperature of the detergent used for reactivation of ATPase activity. It is concluded that both the physiol state of teh micelle and the intrinsic behavior of the ATPase polypeptide affect the temperature dependence of ATPase activity.  相似文献   

3.
The presence of adenine nucleotide translocase (ANT) was found to greatly enhance the partitioning of the ATP analog 2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP) into reduced Triton X-100 micelles. The protein's effect was studied through the quenching of fluorescence of purified ANT, irreversibly inhibited by carboxyatractyloside (CAT), solubilized in reduced Triton X-100 micelles. The dependence of quenching of the protein's time-resolved tryptophan fluorescence on TNP-ATP concentration was measured and found to follow a Stern-Volmer mechanism. However, the calculated quenching constant was too large to be accounted for by the aqueous TNP-ATP concentration. Experiments were therefore conducted to determine the partitioning of the quencher between the three phases present: aqueous, protein-free micelle, and protein micelle; a system also described by the equation of Omann, G. M., and M. Glaser (1985. Biophys. J. 47:623-627.). By measuring the dependence of the apparent quenching rate constant on the protein concentration and protein/micelle ratios, this equation was used to calculate both the quencher partition coefficient into protein-free micelles (Pm) and into protein-micelles (Ppm), as well as the bimolecular quenching rate constant (kpm) in protein micelles. From the quenching experiments, kpm = 5.0 x 10(8)M-1s-1,Pm = 290 and pyrene quenching experiment to be 325, and by a rapid filtration experiment to be 450. Clearly, the presence of the integral membrane protein ANT-CAT in reduced Triton X-100 micelles greatly increases the partition of TNP-ATP into the micelle. ANT alters the properties and thus, the structure of the detergent micelle, which has direct implications for the use of detergent micelles as a model system for membrane proteins and may indicate that analogous effects occur in the mitochondrial membrane.  相似文献   

4.
A folate-binding protein has been solubilized from Lactobacillus casei by treatment of membrane preparations with Triton X-100 in the presence of [3H]folate. The protein-folate complex was purified 100-fold and recovered in a 22% yield by adsorption and elution from microgranular silica (Quso G-32), followed by passage through Sephadex G-150. When subjected to sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the purified preparations showed only a single, protein-staining band whose molecular weight was 25,000. Bound folate (34 nmol/mg of protein) corresponded to 0.85 mol/mol of protein. Analyses of the protein revealed relatively few charged or polar amino acids, an unusually high content of hydrophobic residues and methionine, and the absence of cysteine. The purified protein-folate complex was contained within a Triton micelle (molecular weight, 220,000; about 340 mol of detergent per mol of protein). Bound folate was retained when the micelle was exposed at 4 degrees to solutions whose pH values ranged between 3 and 12; at 23 degrees, however, stability was decreased, especially above pH 8. Folate could be released by treatment of the micelle with ethanol or with chaotropic agents such as guanidinium chloride, perchlorate, or thiocyanate.  相似文献   

5.
The amount of the nonionic detergent Triton X-100 in protein preparations cannot be determined spectrophotometrically from the normal spectrum because the spectral bands of the detergent and proteins overlap, but it was found that the detergent could be determined accurately by 4th-derivative spectrophotometry. The intensity of the derivative absorbance difference between the positive and negative peaks at about 277.5 and 281 nm, respectively, increased linearly with increase in the detergent concentration at more than its critical micelle concentration (about 0.03%). Proteins had little effect on these spectral bands of the detergent. This method is very simple and accurate for determination of the concentration of Triton X-100 in solubilized preparations of membrane proteins.  相似文献   

6.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

7.
Binding of dodecyloctaethyleneglycol monoether (C12E3) and purified Triton X-100 to various integral membrane proteins was studied by chromatographic procedures. Binding capacity decreased in the following order: bovine rhodopsin greater than photochemical reaction center greater than sarcoplasmic reticulum Ca2+-ATPase. The detergents were bound in different amounts to the proteins and less than corresponding to the aggregation number of the pure micelles. Appreciable binding of C12E8 to Ca2+-ATPase was observed far below the critical micelle concentration, consistent with interaction of the membrane protein with non-micellar detergent. Model calculations indicate that the detergents cannot combine with the membrane proteins, forming an oblate ring similar to that of pure detergent micelles, such as has been previously proposed for e.g. cytochrome b5 [Robinson and Tanford (1975) Biochemistry, 14, 365-378]. Other arrangements (prolate and monolayer rings), in which all detergent molecules are in contact with the protein, are considered as alternatives for covering the hydrophobic surface of the membrane protein with a continuous layer of detergent.  相似文献   

8.
The F protein of paramyxoviruses is actively involved in the induction of membrane fusion. This fusion may be between viral and cellular membranes, as in the initiation of infection or in virus-induced lysis of erythrocytes, or between the plasma membranes of different cells. The F protein is activated by proteolytic cleavage to yield two disulfide-linked polypeptides (F1 and F2); however, its mechanism of action is not clear. In the present study, the conformations of the inactive, uncleaved precursor of glycoprotein (F0), and the active, cleaved form (F1,2) have been compared. The UV circular dichroism spectra of the two forms of the F protein indicate that cleavage results in a conformational change. Detergent-binding studies by velocity sedimentation analysis of Triton X-100-protein complexes revealed an increase in exposed hydrophobic surface of the protein on cleavage. The inactive F0 bound an estimated 27 molecules of Triton X-100/F polypeptide; these molecules are presumably bound to the hydrophobic region of the glycoprotein that anchors the spike-like protein in the virus membrane and that is common to both forms of F. The active form, F1,2, bound 67 molecules of Triton X-100. This increase in the number of detergent binding sites upon F protein activation indicates the presence of a hydrophobic region that is peculiar to the active form, and that may be of functional significance in the membrane fusion reaction.  相似文献   

9.
Acetylcholinesterase has been isolated from bovine erythrocyte membranes by affinity chromatography using a m-trimethylammonium ligand. The purified enzyme had hydrophobic properties by the criterion of phase partitioning into Triton X-114. The activity of the hydrophobic enzyme was seen as a slow-moving band in nondenaturing polyacrylamide gels. After treatment with phosphatidylinositol-specific phospholipase C, another form of active enzyme was produced that migrated more rapidly toward the anode in these gels. This form of the enzyme partitioned into the aqueous phase in Triton X-114 phase separation experiments and was therefore hydrophilic. The hydrophobic form bound to concanavalin A in the absence of Triton X-100. As this binding was partially prevented by detergent, but not by alpha-methyl mannoside, D-glucose, or myo-inositol, it is in part hydrophobic. Erythrocyte cell membranes showed acetylcholinesterase activity present as a major form, which was hydrophobic by Triton X-114 phase separation and in nondenaturing gel electrophoresis moved at the same rate as the purified enzyme. In the membrane the enzyme was more thermostable than when purified in detergent. The hydrophobic enzyme isolated, therefore, represents a native form of the acetylcholinesterase present in the bovine erythrocyte cell membrane, but in isolation its stability becomes dependent on amphiphile concentration. Its hydrophobic properties and lectin binding are attributable to the association with the protein of a lipid with the characteristics of a phosphatidylinositol.  相似文献   

10.
Nonionic detergents Triton X-100 and Brij 36T induce dissociation and aggregation of the protein sesame alpha-globulin above the critical micelle concentrations (cmc) of the detergents. Spectrophotometric titration in Triton shows no change in the pKInt value of the tyrosyl groups at 1x10-3 M detergent where both dissociation and aggregation of the protein are observed. Fluorescence measurement does not indicate any change in the environment of the tryptophan groups of the protein in Brij. Viscosity measurements show no major conformational change of the protein in the detergent solution. Binding measurements suggest that perhaps micelles of the detergent predominantly bind to the protein. The detergent micelles preferentially bind to the exposed hydrophobic surfaces of the protein subunits. The association of the protein detergent complex through electrostatic interaction is probably responsible for the formation of the aggregates.  相似文献   

11.
The effect of low concentrations of nonionic detergents with different critical micelle concentrations such as Triton X-100, Brij 35 and octylglucoside on rabbit liver microsomes is studied by means of 31P-NMR, 1H-NMR, dynamic light scattering and functional investigations. Hexane phosphonic acid diethyl ester was used as a phosphorus membrane probe molecule to monitor the interaction of detergent molecules with microsomal phospholipids by 31P-NMR. This method is more sensitive than 31P-NMR of phospholipids alone and permitted the estimation of the maximum number of detergent molecules which can be incorporated in microsomes without the formation of mixed micelles outside the membrane. These membrane saturation concentrations were determined to be 0.07 (Brij 35), 0.1 (Triton X-100) and 0.4 (octylglucoside) (molar ratio of detergent/total phospholipids). Above these detergent concentrations, mixed micelles consisting of detergent and membrane constituents are formed, coexisting with the microsomes up to the membrane solubilization concentration. The results indicate a dependence of the membrane saturation concentration on the critical micelle concentration of the detergent and a preferential removal of phosphatidylcholine over phosphatidylethanolamine from the microsomes by all detergents studied.  相似文献   

12.
Detergents might affect membrane protein structures by promoting intramolecular interactions that are different from those found in native membrane bilayers, and fine-tuning detergent properties can be crucial for obtaining structural information of intact and functional transmembrane proteins. To systematically investigate the influence of the detergent concentration and acyl-chain length on the stability of a transmembrane protein structure, the stability of the human glycophorin A transmembrane helix dimer has been analyzed in lyso-phosphatidylcholine micelles of different acyl-chain length. While our results indicate that the transmembrane protein is destabilized in detergents with increasing chain-length, the diameter of the hydrophobic micelle core was found to be less crucial. Thus, hydrophobic mismatch appears to be less important in detergent micelles than in lipid bilayers and individual detergent molecules appear to be able to stretch within a micelle to match the hydrophobic thickness of the peptide. However, the stability of the GpA TM helix dimer linearly depends on the aggregation number of the lyso-PC detergents, indicating that not only is the chemistry of the detergent headgroup and acyl-chain region central for classifying a detergent as harsh or mild, but the detergent aggregation number might also be important.  相似文献   

13.
The structure and flexibility of the outer membrane protein X (OmpX) in a water-detergent solution and in pure water are investigated by molecular dynamics simulations on the 100-ns timescale and compared with NMR data. The simulations allow for an unbiased determination of the structure of detergent micelles and the protein-detergent mixed micelle. The short-chain lipid dihexanoylphosphatidylcholine, as a detergent, aggregates into pure micelles of approximately 18 molecules, or alternatively, it binds to the protein surface. The detergent binds in the form of a monolayer ring around the hydrophobic beta-barrel of OmpX rather than in a micellar-like oblate; approximately 40 dihexanoylphosphatidylcholine lipids are sufficient for an effective suppression of water from the surface of the beta-barrel region. The phospholipids bind also on the extracellular, protruding beta-sheet. Here, polar interactions between charged amino acids and phosphatidylcholine headgroups act as condensation seed for detergent micelle formation. The polar protein surface remains accessible to water molecules. In total, approximately 90-100 detergent molecules associate within the protein-detergent mixed micelle, in agreement with experimental estimates. The simulation results indicate that OmpX is not a water pore and support the proposed role of the protruding beta-sheet as a "fishing rod".  相似文献   

14.
A phosphodiesterase activity is shown to copurify with the plasma membrane fraction prepared by the two-phase partition method. The enrichment in phosphodiesterase parallels that of alkaline phosphatase, which is thought to be a typical membranous enzyme. Up to 66% of the phosphodiesterase activity can be solubilized by a treatment with 0.2% Triton X-100. Higher doses were ineffective in solubilizing more activity. Analysis by native gel electrophoresis showed that an activity extracted by 2 M NaCl migrated at the same position as 'soluble' phosphodiesterase of cytosolic or extracellular origin. In contrast, the Triton-solubilized enzyme had an apparently higher molecular weight. When subjected to charge shift electrophoresis on agarose gels in the presence of an ionic detergent, the Triton-solubilized phosphodiesterase displayed a hydrophobic character. This behaviour contrasts with that of 'soluble' phosphodiesterases, the electrophoretic mobility of which is unaffected by the presence of an anionic detergent. The hydrophobic character of the membranous enzyme was lost after gentle hydrolysis by papain.  相似文献   

15.
A phosphodiesterase activity is shown to copurify with the plasma membrane fraction prepared by the two-phase partition method. The enrichment in phosphodiesterase parallels that of alkaline phosphatase, which is thought to be a typical membranous enzyme. Up to 66% of the phosphodiesterase activity can be solubilized by a treatment with 0.2% Triton X-100. Higher doses were ineffective in solubilizing more activity. Analysis by native gel electrophoresis showed that an activity extracted by 2 M NaCl migrated at the same position as ‘soluble’ phosphodiesterase of cytosolic or extracellular origin. In contrast, the Triton-solubilized enzyme had an apparently higher molecular weight. When subjected to charge shift electrophoresis on agarose gels in the presence of an ionic detergent, the Triton-solubilized phosphodiesterase displayed a hydrophobic character. This behaviour contrasts with that of ‘soluble’ phosphodiesterases, the electrophoretic mobility of which is unaffected by the presence of an anionic detergent. The hydrophobic character of the membranous enzyme was lost after gentle hydrolysis by papain.  相似文献   

16.
Studies on the hydrophobic properties of sphingomyelinase.   总被引:1,自引:0,他引:1       下载免费PDF全文
Crude liver lysosomal sphingomyelinase (EC 3.1.4.12) displays a heterogeneous electrofocusing profile. The majority of the enzyme resolves into two major components with acidic pI values near pH 4.6 and 4.8. Several additional minor peaks of activity are seen at more basic pH values (up to pH 8.0). In the presence of 0.1% Triton X-100 (or Cutscum), the location of sphingomyelinase is shifted by about 1 pH unit to more basic pH values. Triton X-100 also increases the apparent heterogeneity of sphingomyelinase. Removal of detergent by treatment with Bio Beads SM-2 restores the acidic pI profile. This behaviour appears to be specific, since it was not shared by six glycosidases several of which hydrolyse sphingolipids. The electrofocusing profile of 3H-labelled Triton X-100 was distinct and separate from sphingomyelinase, suggesting that only a small fraction of detergent interacted directly with the enzyme. To study this behaviour in more detail we examined the effect of detergents on elution of sphingomyelinase from sphingosylphosphocholine-Sepharose. Sphingosylphosphocholine is a competitive inhibitor of sphingomyelinase (Ki 0.5 mM). Binding of enzyme was pH-dependent. Triton X-100, Cutscum and Tween 20 eluted significant amounts of enzyme at 0.01-0.02%. Total elution was achieved with up to 0.1% detergent. These data suggest that sphingomyelinase binds to neutral detergent monomers with a high degree of affinity. In excess detergent (5-7 times the critical micellar concentration) the surface charge on the protein is changed, leading to a pI shift. This behaviour probably does not occur at the active site of the enzyme, since there is no appreciable effect on substrate hydrolysis and substrate analogues were ineffective in eluting the enzyme.  相似文献   

17.
Detergents serve as means of solubilizing biological membranes and thus play an important role in purification and characterization of membrane proteins. We report here a simple method to estimate the amount of detergent bound to a protein or present in an aqueous solution. The method is based on the turbidity caused by the addition of a detergent to triolein. Detergent bound to an integral membrane protein, lysophosphatidic acid acyltransferase, was separated by native gel electrophoresis and the amount of detergent bound to the same was estimated. This method is applicable for Triton X-100, sodium dodecyl sulfate and zwitterionic detergent, and was validated in the presence of reagents commonly used in membrane protein solubilization and purification.  相似文献   

18.
AIMS: The cell envelope of the fish pathogen Flavobacterium psychrophilum contains more than 50 polypeptides resolved by sodium dodecyl sulphate-polyacrylaminde gel electrophoresis analysis including a major component named P60. Here, we have developed a simple and efficient procedure for the purification of P60 and therefore permitting its biochemical characterization. METHODS AND RESULTS: Membrane proteins were selectively extracted from isolated cell envelopes with the mild non-ionic detergent Triton X-100. About 10 polypeptides were identified from the detergent fraction, including P60. The P60-enriched fraction was thereafter subjected to an anion exchange chromatographic step in the presence of Triton X-100. The molecule was purified at the milligram level (yield, about 75%; purification factor, 6.2). Analyses performed by charge shift electrophoresis, Triton X-114 phase separation and by detection of sugar-modified components showed that P60 is a true amphiphilic membrane-associated glycoprotein. CONCLUSIONS: The method described in this paper provides pure and non-denaturated P60 and should prove to be easily scaled-up. As sugar-modified protein, P60 should be included in the growing list of glycosylated prokaryotic proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: It offers the possibility of obtaining P60 in amounts allowing the testing of the potential of P60 as a candidate for anti-flavobacteria subunit vaccines, as P60 is one of the major antigens.  相似文献   

19.
When either membranes from scallop gill cilia or reconstituted membranes from the same source are solubilized with Triton X-114 and the detergent is condensed by warming, no significant fraction of any major membrane protein partitions into the micellar detergent. Rather, most of the membrane lipids condense with the detergent phase, forming mixed micelles from which nearly pure lipid vesicles may be produced by adsorption of detergent with polystyrene beads. One minor membrane protein, with a molecular weight of about 20 000, is associated consistently with these vesicles. The aqueous phase contains a fairly homogeneous protein-Triton X-114 micelle sedimenting at 2.6 S in the analytical ultracentrifuge. Sucrose gradient velocity analysis in a detergent-free gradient indicates moderate size polydispersity but constant polypeptide composition throughout the sedimenting protein zone. Sucrose gradient equilibrium analysis (also in a detergent-free gradient) results in a protein-detergent complex banding at a density of 1.245 g/cm3. Sedimentation of the protein-detergent complex in the ultracentrifuge, followed by fixation and normal processing for electron microscopy, reveals a fine, reticular material consisting of 5-10-nm granules. These data are consistent with previous evidence that membrane tubulin and most other membrane proteins exist together as a discrete lipid-protein complex in molluscan gill ciliary membranes.  相似文献   

20.
Properties of mixed dispersions of sphingomyelin and the nonionic detergent, Triton X-305, were investigated by analytical ultracentrifugation and by autocorrelation spectroscopy of scattered laser light. These properties were compared with those of the sphingomyelin/Triton X-100 mixed micellar system reported previously [S. Yedgar, Y. Barenholz, and V. G. Cooper (1974) Biochim. Biophys. Acta 363, 98-111]. The substitution of the 30-unit ethylene oxide chain of Triton X-305 for the 10-unit chain of the Triton X-100 resulted in the appearance of two micellar phases at all detergent/lipid mixture ratios studied, whereas only a single mixed micellar phase was observed using Triton X-100. Despite this difference, the properties of the mixed lipid/detergent micelles obtained using Triton X-100 have been verified in the following respects: The detergent aggregation numbers in the mixed micelles are quite constant over a wide range of detergent molar fractions, being about 70 and 400 for the lighter and heavier mixed micellar phases, respectively. The detergent aggregation numbers are larger in the mixed micelle than in the pure detergent micelle. Very large sphingomyelin aggregation numbers can be accommodated within the mixed micelles, apparently by the critical intervention of the detergent molecules to produce a stable micellar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号