首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: Computationally identifying non-coding RNA regions on the genome has much scope for investigation and is essentially harder than gene-finding problems for protein-coding regions. Since comparative sequence analysis is effective for non-coding RNA detection, efficient computational methods are expected for structural alignments of RNA sequences. On the other hand, Hidden Markov Models (HMMs) have played important roles for modeling and analysing biological sequences. Especially, the concept of Pair HMMs (PHMMs) have been examined extensively as mathematical models for alignments and gene finding. RESULTS: We propose the pair HMMs on tree structures (PHMMTSs), which is an extension of PHMMs defined on alignments of trees and provides a unifying framework and an automata-theoretic model for alignments of trees, structural alignments and pair stochastic context-free grammars. By structural alignment, we mean a pairwise alignment to align an unfolded RNA sequence into an RNA sequence of known secondary structure. First, we extend the notion of PHMMs defined on alignments of 'linear' sequences to pair stochastic tree automata, called PHMMTSs, defined on alignments of 'trees'. The PHMMTSs provide various types of alignments of trees such as affine-gap alignments of trees and an automata-theoretic model for alignment of trees. Second, based on the observation that a secondary structure of RNA can be represented by a tree, we apply PHMMTSs to the problem of structural alignments of RNAs. We modify PHMMTSs so that it takes as input a pair of a 'linear' sequence and a 'tree' representing a secondary structure of RNA to produce a structural alignment. Further, the PHMMTSs with input of a pair of two linear sequences is mathematically equal to the pair stochastic context-free grammars. We demonstrate some computational experiments to show the effectiveness of our method for structural alignments, and discuss a complexity issue of PHMMTSs.  相似文献   

2.
Recent development of strategies using multiple sequence alignments (MSA) or profiles to detect remote homologies between proteins has led to a significant increase in the number of proteins whose structures can be generated by comparative modeling methods. However, prediction of the optimal alignment between these highly divergent homologous proteins remains a difficult issue. We present a tool based on a generalized Viterbi algorithm that generates optimal and sub-optimal alignments between a sequence and a Hidden Markov Model. The tool is implemented as a new function within the HMMER package called hmmkalign.  相似文献   

3.
We present three programs for ab initio gene prediction in eukaryotes: Exonomy, Unveil and GlimmerM. Exonomy is a 23-state Generalized Hidden Markov Model (GHMM), Unveil is a 283-state standard Hidden Markov Model (HMM) and GlimmerM is a previously-described genefinder which utilizes decision trees and Interpolated Markov Models (IMMs). All three are readily re-trainable for new organisms and have been found to perform well compared to other genefinders. Results are presented for Arabidopsis thaliana. Cases have been found where each of the genefinders outperforms each of the others, demonstrating the collective value of this ensemble of genefinders. These programs are all accessible through webservers at http://www.tigr.org/software.  相似文献   

4.

Background  

Yu et al. (BMC Bioinformatics 2007,8: 145+) have recently compared the performance of several methods for the detection of genomic amplification and deletion breakpoints using data from high-density single nucleotide polymorphism arrays. One of the methods compared is our non-homogenous Hidden Markov Model approach. Our approach uses Markov Chain Monte Carlo for inference, but Yu et al. ran the sampler for a severely insufficient number of iterations for a Markov Chain Monte Carlo-based method. Moreover, they did not use the appropriate reference level for the non-altered state.  相似文献   

5.
Protein-protein interactions play a defining role in protein function. Identifying the sites of interaction in a protein is a critical problem for understanding its functional mechanisms, as well as for drug design. To predict sites within a protein chain that participate in protein complexes, we have developed a novel method based on the Hidden Markov Model, which combines several biological characteristics of the sequences neighboring a target residue: structural information, accessible surface area, and transition probability among amino acids. We have evaluated the method using 5-fold cross-validation on 139 unique proteins and demonstrated precision of 66% and recall of 61% in identifying interfaces. These results are better than those achieved by other methods used for identification of interfaces.  相似文献   

6.
SUMMARY: GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any given desired size. GenRGenS also allows the user to combine several of these different models at the same time.  相似文献   

7.
MOTIVATION: Since the whole genome sequences of many species have been determined, computational prediction of RNA secondary structures and computational identification of those non-coding RNA regions by comparative genomics become important. Therefore, more advanced alignment methods are required. Recently, an approach of structural alignment for RNA sequences has been introduced to solve these problems. Pair hidden Markov models on tree structures (PHMMTSs) proposed by Sakakibara are efficient automata-theoretic models for structural alignment of RNA secondary structures, although PHMMTSs are incapable of handling pseudoknots. On the other hand, tree adjoining grammars (TAGs), a subclass of context-sensitive grammars, are suitable for modeling pseudoknots. Our goal is to extend PHMMTSs by incorporating TAGs to be able to handle pseudoknots. RESULTS: We propose pair stochastic TAGs (PSTAGs) for aligning and predicting RNA secondary structures including a simple type of pseudoknot which can represent most known pseudoknot structures. First, we extend PHMMTSs defined on alignment of 'trees' to PSTAGs defined on alignment of 'TAG trees' which represent derivation processes of TAGs and are functionally equivalent to derived trees of TAGs. Then, we develop an efficient dynamic programming algorithm of PSTAGs for obtaining an optimal structural alignment including pseudoknots. We implement the PSTAG algorithm and demonstrate the properties of the algorithm by using it to align and predict several small pseudoknot structures. We believe that our implemented program based on PSTAGs is the first grammar-based and practically executable software for comparative analyses of RNA pseudoknot structures, and, further, non-coding RNAs.  相似文献   

8.
Ligand-Gated Ion Channels (LGICs) is one of the largest groups of transmembrane proteins. Due to their major role in synaptic transmission, both in the nervous system and the somatic neuromuscular junction, LGICs present attractive therapeutic targets. During the last few years, several computational methods for the detection of LGICs have been developed. These methods are based on machine learning approaches utilizing features extracted solely from the amino acid composition. Here we report the development of LiGIoNs, a profile Hidden Markov Model (pHMM) method for the prediction and ligand-based classification of LGICs. The method consists of a library of 10 pHMMs, one per LGIC subfamily, built from the alignment of representative LGIC sequences. In addition, 14 Pfam pHMMs are used to further annotate and classify unknown protein sequences into one of the 10 LGIC subfamilies. Evaluation of the method showed that it outperforms existing methods in the detection of LGICs. On top of that, LiGIoNs is the only currently available method that classifies LGICs into subfamilies.The method is available online at http://bioinformatics.biol.uoa.gr/ligions/.  相似文献   

9.
We have identified eleven novel aminergic-like G-protein coupled receptor (GPCRs) sequences (named AmphiAmR1-11) by searching the genomic trace sequence database for the amphioxus species, Branchiostoma floridae. They share many of the structural motifs that have been used to characterize vertebrate and invertebrate aminergic GPCRs. A preliminary classification of these receptors has been carried out using both BLAST and Hidden Markov Model analyses. The amphioxus genome appears to express a number of D1-like dopamine receptor sequences, including one related to insect dopamine receptors. It also expresses a number of receptors that resemble invertebrate octopamine/tyramine receptors and others that resemble vertebrate alpha-adrenergic receptors. Amphioxus also expresses receptors that resemble vertebrate histamine receptors. Several of the novel receptor sequences have been identified in amphioxus cDNA libraries from a number of tissues.  相似文献   

10.
【目的】链霉菌染色体重组和外源DNA片段插入是影响其遗传多样性的主要因素。旨在考察放线菌型整合性接合元件(AICE)在链霉菌遗传多样性中所发挥的作用。【方法】基于AICE的特征性模块, 采用隐马尔科夫模型预测链霉菌基因组序列中的AICEs。【结果】在已全测序的12条链霉菌染色体和35个质粒中, 共识别出29个AICEs, 其中12个为首次报道。Streptomyces coelicolor基因组中发现了4个AICEs, 而其近缘的Streptomyces lividans却没有。【结论】AICEs都整合在链霉菌染色体的核心区, 且都具有典型的整合环出、复制和接合转移等核心模块, 这些可自行转移的元件在链霉菌基因组可塑性中扮演了重要角色。  相似文献   

11.
SUMMARY: The Cytochrome P450 Engineering Database (CYPED) has been designed to serve as a tool for a comprehensive and systematic comparison of protein sequences and structures within the vast and diverse family of cytochrome P450 monooxygenases (CYPs). The CYPED currently integrates sequence and structure data of 3911 and 25 proteins, respectively. Proteins are grouped into homologous families and superfamilies according to Nelson's classification. Nonclassified CYP sequences are assigned by similarity. Functionally relevant residues are annotated. The web accessible version contains multisequence alignments, phylogenetic trees and HMM profiles. The CYPED is regularly updated and supplies all data for download. Thus, it provides a valuable data source for phylogenetic analysis, investigation of sequence-function relationships and the design of CYPs with improved biochemical properties. Abbreviations: Cytochrome P450 Engineering Database, CYPED; cytochrome P450 monooxygenase, CYP; Hidden Markov Model, HMM. AVAILABILITY: www.cyped.uni-stuttgart.de  相似文献   

12.
The problems associated with gene identification and the prediction of gene structure in DNA sequences have been the focus of increased attention over the past few years with the recent acquisition by large-scale sequencing projects of an immense amount of genome data. A variety of prediction programs have been developed in order to address these problems. This paper presents a review of the computational approaches and gene-finders used commonly for gene prediction in eukaryotic genomes. Two approaches, in general, have been adopted for this purpose: similarity-based and ab initio techniques. The information gleaned from these methods is then combined via a variety of algorithms, including Dynamic Programming (DP) or the Hidden Markov Model (HMM), and then used for gene prediction from the genomic sequences.  相似文献   

13.
Nguyen  Nam-phuong  Nute  Michael  Mirarab  Siavash  Warnow  Tandy 《BMC genomics》2016,17(10):765-100

Background

Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics.

Results

We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy.

Conclusion

HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp.
  相似文献   

14.
MOTIVATION: Copy number profiling methods aim at assigning DNA copy numbers to chromosomal regions using measurements from microarray-based comparative genomic hybridizations. Among the proposed methods to this end, Hidden Markov Model (HMM)-based approaches seem promising since DNA copy number transitions are naturally captured in the model. Current discrete-index HMM-based approaches do not, however, take into account heterogeneous information regarding the genomic overlap between clones. Moreover, the majority of existing methods are restricted to chromosome-wise analysis. RESULTS: We introduce a novel Segmental Maximum A Posteriori approach, SMAP, for DNA copy number profiling. Our method is based on discrete-index Hidden Markov Modeling and incorporates genomic distance and overlap between clones. We exploit a priori information through user-controllable parameterization that enables the identification of copy number deviations of various lengths and amplitudes. The model parameters may be inferred at a genome-wide scale to avoid overfitting of model parameters often resulting from chromosome-wise model inference. We report superior performances of SMAP on synthetic data when compared with two recent methods. When applied on our new experimental data, SMAP readily recognizes already known genetic aberrations including both large-scale regions with aberrant DNA copy number and changes affecting only single features on the array. We highlight the differences between the prediction of SMAP and the compared methods and show that SMAP accurately determines copy number changes and benefits from overlap consideration.  相似文献   

15.
16.
SUMMARY: Hidden Markov models (HMMs) are widely used for biological sequence analysis because of their ability to incorporate biological information in their structure. An automatic means of optimizing the structure of HMMs would be highly desirable. However, this raises two important issues; first, the new HMMs should be biologically interpretable, and second, we need to control the complexity of the HMM so that it has good generalization performance on unseen sequences. In this paper, we explore the possibility of using a genetic algorithm (GA) for optimizing the HMM structure. GAs are sufficiently flexible to allow incorporation of other techniques such as Baum-Welch training within their evolutionary cycle. Furthermore, operators that alter the structure of HMMs can be designed to favour interpretable and simple structures. In this paper, a training strategy using GAs is proposed, and it is tested on finding HMM structures for the promoter and coding region of the bacterium Campylobacter jejuni. The proposed GA for hidden Markov models (GA-HMM) allows, HMMs with different numbers of states to evolve. To prevent over-fitting, a separate dataset is used for comparing the performance of the HMMs to that used for the Baum-Welch training. The GA-HMM was capable of finding an HMM comparable to a hand-coded HMM designed for the same task, which has been published previously.  相似文献   

17.
This work presents a probabilistic method for mapping human sleep electroencephalogram (EEG) signals onto a state space based on a biologically plausible mathematical model of the cortex. From a noninvasive EEG signal, this method produces physiologically meaningful pathways of the cortical state over a night of sleep. We propose ways in which these pathways offer insights into sleep-related conditions, functions, and complex pathologies. To address explicitly the noisiness of the EEG signal and the stochastic nature of the mathematical model, we use a probabilistic Bayesian framework to map each EEG epoch to a distribution of likelihoods over all model sleep states. We show that the mapping produced from human data robustly separates rapid eye movement sleep (REM) from slow wave sleep (SWS). A Hidden Markov Model (HMM) is incorporated to improve the path results using the prior knowledge that cortical physiology has temporal continuity.  相似文献   

18.
19.
Classifying G-protein coupled receptors with support vector machines   总被引:7,自引:0,他引:7  
MOTIVATION: The enormous amount of protein sequence data uncovered by genome research has increased the demand for computer software that can automate the recognition of new proteins. We discuss the relative merits of various automated methods for recognizing G-Protein Coupled Receptors (GPCRs), a superfamily of cell membrane proteins. GPCRs are found in a wide range of organisms and are central to a cellular signalling network that regulates many basic physiological processes. They are the focus of a significant amount of current pharmaceutical research because they play a key role in many diseases. However, their tertiary structures remain largely unsolved. The methods described in this paper use only primary sequence information to make their predictions. We compare a simple nearest neighbor approach (BLAST), methods based on multiple alignments generated by a statistical profile Hidden Markov Model (HMM), and methods, including Support Vector Machines (SVMs), that transform protein sequences into fixed-length feature vectors. RESULTS: The last is the most computationally expensive method, but our experiments show that, for those interested in annotation-quality classification, the results are worth the effort. In two-fold cross-validation experiments testing recognition of GPCR subfamilies that bind a specific ligand (such as a histamine molecule), the errors per sequence at the Minimum Error Point (MEP) were 13.7% for multi-class SVMs, 17.1% for our SVMtree method of hierarchical multi-class SVM classification, 25.5% for BLAST, 30% for profile HMMs, and 49% for classification based on nearest neighbor feature vector Kernel Nearest Neighbor (kernNN). The percentage of true positives recognized before the first false positive was 65% for both SVM methods, 13% for BLAST, 5% for profile HMMs and 4% for kernNN.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号